簡易檢索 / 詳目顯示

研究生: 吳冠徵
Wu, Kuan-Cheng
論文名稱: 基於近紅外光擴散相關性光譜儀之非侵入性顱內壓評估
Noninvasive Approach for Estimating Intracranial Pressure Using Near-Infrared Diffuse Correlation Spectroscopy
指導教授: 陳家進
Chen, Jia-Jin
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 41
中文關鍵詞: 非侵入式顱內壓閉鎖臨界壓力擴散相關性光譜儀近紅外光譜血管張力
外文關鍵詞: non-invasive intracranial pressure, critical closing pressure, diffuse correlation spectroscopy, near-infrared spectroscopy, vessel wall tension
相關次數: 點閱:94下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 監測顱內壓對於創傷性腦損傷的醫療監測是非常必要的。在臨床上,通常是利用侵入式的壓力感測器來監測顱內壓,然而這會升高感染的機率。閉鎖臨界壓力是一種非侵入式監測顱內壓得的量測方法。閉鎖臨界壓力的定義為血流量降為零時相對應的動脈血壓。閉鎖臨界壓力即為血管張力以及此血液動力系統中另一端的壓力之總和,而此另一端的壓力亦即顱內壓。
    根據定義,推算閉鎖臨界壓力需要血流以及動脈壓的量測。本研究應用擴散相關性光譜儀來量測腦血管中的血流。擴散相關性光譜儀是一個基於光學的、非侵入式的可連續長時間監測血流的儀器。而動脈壓方面,採用商業化的光纖壓力量測儀,將其插入股動脈對其做直接性高時間解析度的長時間量測。此壓力量測儀同時也被使用於直接量測顱內壓,用以與閉鎖臨界壓力相比較。然而傳統的擴散相關性光譜儀的時間解析度稍低,通常只被用於量測單一心跳內或數個心跳週期之平均血流。為了量測搏動的血液訊號,我們研發了一個快速擴散相關性光譜儀。此儀器是一個基於現場可程式化閘陣列之光子到達時間記錄系統,並以USB3.0作為訊號傳遞之媒介。雖然新儀器之時間解析度較傳統為高,其訊雜比卻也同時因光子收集時間較短而下降。針對此一問題,我們研發了一個新的演算法來提升訊雜比。
    在驗證實驗上,我們將此量測應用於六隻大鼠,於不同程度之顱內壓狀況下以及不同吸入氣體下進行量測。不同程度之高顱內壓以緩慢注入之人工腦脊液來誘發。這些不同程度之顱內壓的量測被用於比較在不同範圍內顱內壓與閉鎖臨界壓力的關係。另一方面,過去的實驗指出血液中不同二氧化碳濃度實際上會影響血管擴張以及收縮,也就是會影響血管張力,導致閉鎖臨界壓力估算之非侵入性顱內壓的準確度降低。在這個研究中我們觀察到顱內壓以及閉鎖臨界壓力確實如閉鎖臨界壓力理論所述,有著正相關的關係,而不同吸入氣體確實會影響血管張力。我們利用吸入不同氣體的量測來調校閉鎖臨界壓力中血管張力項之影響。校正過之閉鎖臨界壓力和顱內壓之間確實有良好的正相關關係。我們相信這個方法經過更多的研究,在未來或可做為一個非侵入性的顱內壓量測方法。

    Monitoring of Intracranial Pressure (ICP) is essential in traumatic brain injury. In clinical, monitoring ICP is usually performed with invasive insertion of a pressure sensor which increases the chance of infection. Critical closing pressure (CrCP) is one of the non-invasive approaches of monitoring ICP. CrCP is defined as the arterial blood pressure at which the blood flow decreases to zero. It is equivalent to the sum of the tension of the blood vessels and the pressure on the other side of the hemodynamic system which is ICP measured in the cerebral vessels.
    According to its definition, blood flow and arterial blood pressure are required to estimate CrCP. This study utilized Diffusion Correlation Spectroscopy (DCS) to measure the blood flow in the cerebral vessels. DCS is an optical-based, non-invasive, long term measurement of blood flow. For arterial blood pressure, a commercialized fiber optic pressure sensor is inserted into the femoral artery and to measure the ICP invasively for comparison. Traditional DCS, however, has a rather low time resolution which was used to monitor the mean blood flow over one or several heart beats. In order to derive the pulsatile blood flow, we developed a fast DCS device using field-programmable gate array (FPGA) based photon-arrival-time-documenting board and a USB3.0 interface. Albeit the time resolution of the new device is much higher, the accuracy of DCS decreases when the integration time decreases. A new algorithm is developed to restore the signal to noise ration of the DCS signal.
    We performed measurements of elevated ICP and the inhalation of different gas mixtures on 6 rats. Levels of elevated ICP are induced through the infusion of artificial cerebrospinal fluid. They are used to find the relationship between ICP and CrCP over a wider range. On the other hand, it is shown that different partial pressure of CO2 in the blood can cause the dilation and constriction of blood vessels, hence changing the vessel wall tension which influences the accuracy of CrCP. It is observed that CrCP is an increasing function of ICP as the theory predicted, and different gas mixtures do change the wall tension. We use the measurements of the inhalation of different gas mixtures to eliminate the term of vessel wall tension in the formula of CrCP. Good correlation was found between the invasive ICP and the adjusted non-invasive CrCP derived from DCS. We believe that, in the future, the non-invasive method can be introduced to human.

    摘要 I ABSTRACT III CONTENTS V LIST OF FIGURES VII LIST OF TABLES VIII LIST OF ABBREVIATIONS IX INTRODUCTION 1 Measurement of critical closing pressure (CrCP) 2 The aims of this study 4 MATERIALS AND METHODS 6 Near-infrared diffuse correlation spectroscopy (DCS) 6 Autocorrection calculation in near-infrared DCS 9 Building the fast DCS system 10 Intracranial pressure monitoring 12 Animal experiment 13 Animal experiment: ECG electrodes & flipping 14 Animal experiment: intracranial pressure raising model on rats 15 Gas inhaling model on rats 18 Experimental routine 19 RESULTS 21 Fast diffuse correlation spectroscopy device 21 Gas inhaling model on rats 30 Intracranial pressure raising model on rats 30 DISCUSSION 34 Fast DCS device 34 Fitting the descending-late part 34 Gas inhaling model on rats 35 Intracranial pressure raising model on rats 35 Conclusion and future work 36 ACKNOWLEDGEMENT 37 REFERENCE 38

    Beard, D. J., McLeod, D. D., Logan, C. L., Murtha, L. A., Imtiaz, M. S., Van Helden, D. F., & Spratt, N. J. "Intracranial pressure elevation reduces flow through collateral vessels and the penetrating arterioles they supply. A possible explanation for ‘collateral failure’and infarct expansion after ischemic stroke," Journal of Cerebral Blood Flow & Metabolism, 35(5), 861-872, (2015).
    Bellner, J., Romner, B., Reinstrup, P., Kristiansson, K.-A., Ryding, E., & Brandt, L. "Transcranial Doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP)," Surgical neurology, 62(1), 45-51, (2004).
    Boas, D. A., "Diffuse photon probes of structural and dynamical properties of turbid media: theory and biomedical applications," (Doctor of Philosophy), Graduate School of Arts and Sciences, University of Pennsylvania, (1996).
    Cooper, D. J., Rosenfeld, J. V., Murray, L., Arabi, Y. M., Davies, A. R., D'urso, P., . . . Reilly, P. "Decompressive craniectomy in diffuse traumatic brain injury," New England Journal of Medicine, 364(16), 1493-1502, (2011).
    de Riva, N., Budohoski, K. P., Smielewski, P., Kasprowicz, M., Zweifel, C., Steiner, L. A., . . . Czosnyka, M. "Transcranial Doppler pulsatility index: what it is and what it isn’t," Neurocritical care, 17(1), 58-66, (2012).
    Dewey, R. C., Pieper, H. P., & Hunt, W. E. "Experimental cerebral hemodynamics: vasomotor tone, critical closing pressure, and vascular bed resistance," Journal of neurosurgery, 41(5), 597-606, (1974).
    Dietsche, G., Ninck, M., Ortolf, C., Li, J., Jaillon, F., & Gisler, T. "Fiber-based multispeckle detection for time-resolved diffusing-wave spectroscopy: characterization and application to blood flow detection in deep tissue," Applied optics, 46(35), 8506-8514, (2007).
    Donnelly, J., Czosnyka, M., Harland, S., Varsos, G. V., Cardim, D., Robba, C., . . . Smielewski, P. "Cerebral haemodynamics during experimental intracranial hypertension," Journal of Cerebral Blood Flow & Metabolism, 37(2), 694-705, (2017).
    Durduran, T., & Yodh, A. G. "Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement," Neuroimage, 85, 51-63, (2014).
    Eisenberg, H. M., Frankowski, R. F., Contant, C. F., Marshall, L. F., Walker, M. D., & Centers, C. C. N. S. T. "High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury," Journal of neurosurgery, 69(1), 15-23, (1988).
    Ganong, W. F. In Review of Medical Physiology (twenty-first ed.: McGraw-Hill Companies Inc. (Reprinted from: 21), pp. 556), (2003).
    Grüne, F., Kazmaier, S., Stolker, R. J., Visser, G. H., & Weyland, A. "Carbon dioxide induced changes in cerebral blood flow and flow velocity: role of cerebrovascular resistance and effective cerebral perfusion pressure," Journal of Cerebral Blood Flow & Metabolism, 35(9), 1470-1477, (2015).
    Gustavsson, B., "Management of Increased Intracranial Pressure. In T. Sejersen & C. H. Wang (Eds.), Acute Pediatric Neurology (London: Springer London, pp. 211-227), (2014).
    Hacke, W., Schwab, S., Horn, M., Spranger, M., De Georgia, M., & Von Kummer, R. "'Malignant'middle cerebral artery territory infarction: clinical course and prognostic signs," Archives of neurology, 53(4), 309-315, (1996).
    Holloway, K. L., Barnes, T., Choi, S., Bullock, R., Marshall, L. F., Eisenberg, H. M., . . . Marmarou, A. "Ventriculostomy infections: the effect of monitoring duration and catheter exchange in 584 patients," Journal of neurosurgery, 85(3), 419-424, (1996).
    Houpt, T. A., Corp, E. S., & Berlin, R. "Intracerebroventricular angiotensin II increases intraoral intake of water in rats," Peptides, 19(1), 171-173, (1998).
    Mitchell, P. H., Kirkness, C., & Blissitt, P. A. "Cerebral Perfusion Pressure and Intracranial Pressure in Traumatic Brain Injury," Annual Review of Nursing Research, Volume 33, 2015: Traumatic Brain Injury, 33, 111, (2015).
    Panerai, R. "The critical closing pressure of the cerebral circulation," Medical engineering & physics, 25(8), 621-632, (2003).
    Peltonen, G. L., Harrell, J. W., Aleckson, B. P., LaPlante, K. M., Crain, M. K., & Schrage, W. G. "Cerebral blood flow regulation in women across menstrual phase: differential contribution of cyclooxygenase to basal, hypoxic, and hypercapnic vascular tone," American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, ajpregu. 00106.02016, (2016).
    Raboel, P., Bartek, J., Andresen, M., Bellander, B., & Romner, B. "Intracranial pressure monitoring: invasive versus non-invasive methods—a review," Critical care research and practice, 2012, (2012).
    Steiner, L., & Andrews, P. "Monitoring the injured brain: ICP and CBF," BJA: British Journal of Anaesthesia, 97(1), 26-38, (2006).
    Ursino, M., Giulioni, M., & Lodi, C. A. "Relationships among cerebral perfusion pressure, autoregulation, and transcranial Doppler waveform: a modeling study," Journal of neurosurgery, 89(2), 255-266, (1998).
    Varsos, G. V., Budohoski, K. P., Czosnyka, M., Kolias, A. G., Nasr, N., Donnelly, J., . . . Kirkpatrick, P. J. "Cerebral vasospasm affects arterial critical closing pressure," Journal of Cerebral Blood Flow & Metabolism, 35(2), 285-291, (2015).
    Varsos, G. V., Richards, H., Kasprowicz, M., Budohoski, K. P., Brady, K. M., Reinhard, M., . . . Czosnyka, M. "Critical closing pressure determined with a model of cerebrovascular impedance," Journal of Cerebral Blood Flow & Metabolism, 33(2), 235-243, (2013).
    Willie, C. K., Tzeng, Y. C., Fisher, J. A., & Ainslie, P. N. "Integrative regulation of human brain blood flow," The Journal of physiology, 592(5), 841-859, (2014).
    Yu, G., Durduran, T., Zhou, C., Cheng, R., & Yodh, A. "Near-infrared diffuse correlation spectroscopy for assessment of tissue blood flow," Handbook of Biomedical Optics, 195-216, (2011).
    Zhou, C., Yu, G., Furuya, D., Greenberg, J. H., Yodh, A. G., & Durduran, T. "Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain," Optics express, 14(3), 1125-1144, (2006).

    無法下載圖示 校內:2022-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE