簡易檢索 / 詳目顯示

研究生: 朱桓頡
Chu, Huan-Jie
論文名稱: 曲梁之電壓與運動耦合關係
Voltage and motion coupling relationship of Curved Timoshenko Beam
指導教授: 王榮泰
Wang, Rong-Tai
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 81
中文關鍵詞: 曲樑壓電材料有限元素電壓
外文關鍵詞: Curved beam, piezoelectric material, resistor, modal frequencies, finite element
相關次數: 點閱:136下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本文採用模態法與有限元素法來求取壓電曲樑之模態頻率,並討論兩種方法模態頻率差異,並藉由有限元素法搭配 所推導出動力有限平衡方程式與電壓方程式使用 數值積分法求出電壓與曲樑運動之耦合關係;此壓電結構中的第一和第三跨距為單層的 樑,第二跨距為壓電複合層曲樑組成
    在模態法方面,為瞭解壓電曲樑之力學行為,則利用應力場、應變場與位移場的關係推導出應變能項和動能項,再以漢米爾頓原理求得曲樑之運動方程式,利用位移場與應力場搭配曲樑之邊界條件計算出模態頻率,並討論在不同的幾何參數下對模態頻率之影響。
    在有限元素法方面,擷取單層與雙層的一個元素,並且以靜態平衡模式找出此元素各節點位移與轉角之形狀函數,計算此塊有限元素的表示式,再藉由應變能項與動能項計算出此結構的勁度矩陣和質量矩陣,進而利用 及推疊技巧解出系統的模態頻率。
    最後改變壓電曲樑的外觀尺寸,來探討曲樑位移圖形與壓電片所產生電壓結果的關係。
    關鍵詞:曲樑、壓電材料、有限元素、電壓

    Abstract
    In this thesis, the Timoshenko curved beam with partially surface mounted piezoelectric material is presented. A resistor connected two surfaces of the piezoelectric material forms a network. The governing equations of the entire system are derived via the Hamilton’s principle. The analytic approach is adopted into the calculation of modal frequencies. Furthermore, the shape functions of one element of the entire beam are derived from the equations of static equilibrium and the nodal displacements of the element. Based on the shape functions of one element, the finite technique is presented in the study of the coupling between motion of the entire beam and induced voltage of the piezoelectric material. The effects of location, length and thickness of the piezoelectric material and resistance of the resistor on the vibration of the entire beam caused by an external load are investigated. Results show that larger resistance can suppress the vibration more efficiently. Furthermore, a larger piezoelectric material makes the beam to have less vibration.
    Keywords: Curved beam, piezoelectric material, resistor, modal frequencies, finite element.

    目錄 摘要 ...... I 英文摘要..... II 誌謝 ...... III 目錄 ...... IV 表目錄 .... VII 圖目錄 ..... VIII 符號說明 .....X 第一章 緒論.....1 ∫1-1 前言.....1 ∫1-2文獻回顧....2 ∫1-3 研究範圍.....5 第二章 壓電曲樑之運動方程式推導...7 ∫2-1 模型設定.....7 ∫2-2 應變能與動能.....8∫2-3 線性壓電理論.....10∫2-4 漢米爾頓定理.....13∫2-5 各跨距之邊界條件...17第三章 模態法.....19 ∫3-1 第一和第三跨距...19 ∫3-2 第二跨距.....21 ∫3-3嵌入各跨距位移場、應力場....26 ∫3-4利用邊界條件計算自然頻率....27 第四章 有限元素法.....29 ∫4-1第一和第三跨距....29 ∫4-2第二跨距....35 ∫4-3 整體壓電曲樑有限元素分析...48∫4-4 自然頻率.....50 ∫4-5 Newmark數值積分法....50 第五章 案例探討與數據分析...53 ∫5-1 案例探討.....53 ∫5-2 各參數值.....53 ∫5-3 數據討論.....55 ∫5-3-1 模態法與有限元素法比較...55 ∫5-3-2壓電材料之厚度效應....59 ∫5-3-3壓電材料之長度效應....62 ∫5-3-4壓電材料之位置效應...65 ∫5-3-5 不同電阻效應...68 第六章 總結與結論.....69 ∫6-1 結論.....69 ∫6-2 建議.....69 參考文獻.....71 附錄A......74 附錄B......75 附錄C......76 附錄D......77 附錄E......78 附錄H......79 附錄I......80

    參考文獻
    1. A. E. H. Love, The mathematical theory of Elasticity, 4th Ed., Dover, New York, 1944.

    2. I. U. Ojalvo, “Coupled twist-bending vibrations of incomplete Elastic ring,” International Journal of Mechanical Sciences, Vol. 4, pp. 53-72, 1962.

    3. E. Volerra and J. D. Morrel, “Lowest natural frequency of elastic Hide arcs,” Journal of the Acoustical Society of America, Vol. 33, pp. 1787-1790, 1961.

    4. E. Volerra and J. D. Morrel, “Lowest natural frequency of elastic arc for vibrations outside the plane of initial curvature,” Journal of Applied Mechanics, Vol. 28, pp. 624-627, 1961.

    5. E. Volterra and J. H. Gaines, Advanced strength of materials, Prentice-Hill, Inc., Englewood Cliffs, N.J., 1971.

    6. S. S. Rao, “Effects of transverse shear and rotary inertia on the coupled twist-bending vibrations of circular rings,” Journal of Sound and Vibration, Vol. 16, pp. 551-556, 1971.

    7. D. E. Panayotounakos and P. S. Theocaris, “The dynamically loaded circular beam on an elastic foundation,” Journal of Applied Mechanics, Vol. 47, pp. 139-144, 1980.

    8. H. Abramovich and A. Livshits, “Dynamic behavior of cross-ply laminated beams with piezoelectric layers,” Computer and Structures, Vol. 25, pp. 371-379, 1993.

    9. R.W Clough, “The finite element method in plane stress analysis,” Proc . 2nd ASME Conference on economic computation, Pittsburgh, Pa, Sept., 1960.

    10. K. Kapur, “Vibration of a Timoshenko beam, using finite-element approach,” Journal of Acoustical Society of America, Vol. 40, No. 5, pp. 1058-1063, 1966.

    11. R. Davis, R. D. Henshell and G. B. Warburton, “A Timoshenko beam element,” Journal of Sound and Vibration, Vol. 22, No. 4, pp. 475-487, 1972.

    12. D. L. Thomas, J. M. Wilson and R. R. Wilson, “Timoshenko beam finite element,” Journal of Sound and Vibration, Vol. 31, No. 1, pp. 315-330, 1973.

    13. B. A. H. Abbas and J. Thomas, “Finite element model for dynamic analysis of Timoshenko beam,” Journal of Sound and Vibration, Vol. 41, No. 3, pp. 291-299, 1975.

    14. D. J. Dawe, “A finite element for the vibration Timoshenko beams,” Journal of Sound and Vibration, Vol. 60, No. 1, pp. 11-20, 1978.

    15. T. Yokoyama, “A reduced integration Timoshenko beam element,” Journal of Sound and Vibration, Vol. 169, No. 3, pp. 411-418, 1994.

    16. B. A. H. Abbas and J. Thomas, “Finite element model for dynamic analysis of Timoshenko beam,” Journal of Sound and Vibration, Vol. 41, No. 3, pp. 291-299, 1975.

    17. G. E. Martin, “Determination of equivalent-circuit constants of piezoelectric resonators of moderately low Q by absolute-admittance measurements,” Journal of the Acoustic Society of America, Vol. 26, No. 3, pp. 413-420, May 1954.

    18. G. Bradfield, “Ultrasonic transducers: 1. Introduction to ultrasonic transducers Part A,” Ultrasonics, pp. 112-123, 1970.

    19. H. S. Tzou and G. C. Wang “Distributed structural dynamics control of flexible manipulators Structural dynamics and viscoelastic actuator,” Composite and Structure, Vol. 35, pp. 669-667, 1990.

    20. X. Q. Peng, K. Y. Lam and G. R. Liu, “Active vibration control of composite beam with piezoelectric: a finite element model with third order theory,” Journal of Sound and Vibration, Vol. 209, pp. 635-650, 1998.

    21. Z. Chaudhry and C. A. Rogers, “Enhanced structural contract with discretely attached induced strain actuators,” Transaction of the ASME, Journal of Mechanical Design, Vol. 115, pp. 718-722, 1993.

    22. C. K. Lee, “Laminated piezopolymer plates for torsion and bending sensors and actuators,” Journal of the Acoustical Society of America Vol. 85, pp. 2432-2439, 1989.

    23. C. Q. Chen, X. M. Wang and Y. P. Shen, “Finite element approach of vibration control using self-sensing piezoelectric actuators,” Computers and Structures, Vol. 60, No. 3, pp. 505-512, 1996.

    24. A. Benjeddou, M. A. Trindade and R. Ohayon, “New Shear Actuated Smart Structure Beam Finite Element,” AIAA Journal, Vol. 37, pp. 378-383, 1999.

    25. D. H. Robbins and J. N. Reddy, “Analysis of piezoelectrically actuated beams using a layer-wise displacement theory,” Computers and Structures, Vol. 41, No. 2, pp. 265-279, 1991.

    26. X. Y. Ye, Z. Y. Zhou, Y. Yang, J.H Zhang and J. Yao, “Determination of the mechanical properties of Microstructures,” Sensors and Actuators, A54, pp. 750-754, 1996.

    27. H. S. Tzou and C. I. Tseng, “Distributed vibration control and Identification of Coupled Elastic/Piezoelectric System : Finite Element Formulation and Application,” Mechanical Systems and Signal Processing, Vol. 5, No. 3, pp. 215-231, 1991.

    下載圖示 校內:2018-09-09公開
    校外:2018-09-09公開
    QR CODE