簡易檢索 / 詳目顯示

研究生: 林凡
Lin, Fan
論文名稱: 區塊混和多工存取技術之系統設計與性能分析
Block Scrambling Multiple Access – Its System Design and Performance Analysis
指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 369
中文關鍵詞: 循環字首交分頻多工存取技術分碼多工存取技術區塊混和多工存取技術區塊混和分碼多工存取技術區塊混和多工-分碼多工存取技術
外文關鍵詞: Cyclic prefix, orthogonal frequency division multiple access (OFDMA), code division multiple access (CDMA), block scrambling multiple access (BSMA), block scrambling - code division multiple access (BS-CDMA), block scrambling multiple access - code division multiple access (BSMA-CDMA)
相關次數: 點閱:225下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中,我們提出了一種不必使用循環字首(Cyclic Prefix)來克服多路徑干擾的多重 擷取之技術。此系統稱為區塊混和多工存取技術(Block Scrambling Multiple Access)。在區塊混和多工存取系統中,我們將會一串碼組送入快速複立葉轉換中,以藉此來產生一連串的正交載波。之後,我們再將資料和這些正交載波相乘。在接收端,我們會再送同一串碼組,進入快速複利葉轉換中,產生一連串的正交載波,之後再將這些載波取共軛,以藉此來進行解調的工作。這和正交分頻多工存取技術最大的不同之處在於,區塊混和多工存取系統不需要將資料送入快速複利葉轉換中,因此,區塊混和多工存取系統不需要循環字首來克服多路徑的干擾。此外,區塊混和多工存取系統,可以藉由他的第二個低通濾波器來抑制雜訊,所以,他會具有比正交分頻多工存取技術更好的系統效能。再加上, 區塊混和多工技術,可以提供比正交分頻多工存取技術更高的頻寬利用效率。不過,再具有多路徑干擾的情況下區塊混和多工無法支援很穩定的用戶數。因此, 在第五章,我們提出了區塊混和分碼多工存取技術(Block Scrambling-Code Division Multiple Access)來解決這個問題。區塊混和分碼多工技術,也具備不錯的頻寬利用效率及系統效能。在第七章,我們將區塊混和多工存取和區塊混和分碼多工存取整合在一起成為,區塊混和多工-分碼多工存取技術(Block Scrambling
    Multiple Access - Code Division Multiple Access)。此系統,具備以上兩個系統的優點,擁有非常棒的頻寬利用效率及系統效能。並且她總共能支援比區塊混和多工技術多M 備的用戶數。

    In this thesis, we proposed a multiple access to overcome cyclic prefix (CP) of orthogonal frequency division multiple access (OFDMA). This system was called block scrambling multiple access (BSMA). In OFDMA, it sent data into IFFT to produce orthogonal data. In BSMA, we sent a code sequence into FFT to produce orthogonal subcarriers. Then we would let the data multiply with these orthogonal subcarriers. In other words, we used FFT to achieve
    multi-carrier system. We did not need so many oscillator like MC-CDMA. In the receiver, we did not send signal into FFT to recover. So, we did not need CP, just like OFDMA, to overcome multipath interference (MI). So, BSMA combined the benefit of MC-CDMA, BSMA did not CP to overcome MI and BSMA did not as many as oscillator to produce subcarriers. Besides, BSMA could use its second LPF to reduce AWGN noise. So, BSMA could enhance
    BER performance by its FFT size. But, BSMA had a drawback. That was BSMA could not provide a stable number of users in the multipath fading channel. We would discuss it in the Chapter 3. In this thesis, we would prove BSMA could work in the AWGN channel and Rayleigh fading channel. And we would proof BSMA could enhance BER performance by its FFT size. Besides, we would provide another system block scrambling - code division multiple access (BS-CDMA) to overcome the problem of users number of BSMA. At the final,
    we would combine BSMA with BS-CDMA as BSMA-CDMA. BSMA-CDMA had BSMA’s bandwidth efficiency and M times supportable uses number than BSMA. We would prove BSMA could work in the Rayleigh fading channel.

    中文摘要iv Abstract v Acknowledgements vi List of Figures xi List of Tables xxix Abbreviations xxxi Symbols xxxiii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Chapter Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Block Scrambling Multiple Access System Model and Mathematical Derivation in the Downlink AWGN Channel 6 2.1 Transmitter System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.3.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Block Scrambling Multiple Access System Model and Mathematical Derivation in the Downlink Multipath Rayleigh Fading Channel 26 3.1 Transmitter System Model and Derivation . . . . . . . . . . . . . . . . . . . . 26 3.2 Channel Model and Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Receiver Model and Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.4.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Physically Realizable System Model . . . . . . . . . . . . . . . . . . . . . . . 64 3.5.1 Realizable transmitted system model . . . . . . . . . . . . . . . . . . . 65 3.5.2 Channel Model and Derivation . . . . . . . . . . . . . . . . . . . . . . 71 3.5.3 Receiver Model and Derivation . . . . . . . . . . . . . . . . . . . . . . 74 3.5.4 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.4.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.5.4.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 4 Block Scrambling Multiple Access System Model and Mathematical Derivation in the Uplink Multipath Rayleigh Fading Channel 103 4.1 Transmitter System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.2 Channel Model and Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3 Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 4.4 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 4.4.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 5 Block Scrambling-CDMA System Model and Derivation in the Downlink Multipath Rayleigh Fading Channel 136 5.1 Transmitter System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.2 Channel Model and Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.3 Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 5.4 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 5.4.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153 5.5 Physically Realizable System Model . . . . . . . . . . . . . . . . . . . . . . . 164 5.5.1 Realizable transmitted system model . . . . . . . . . . . . . . . . . . . 164 5.5.2 Channel Model and Derivation . . . . . . . . . . . . . . . . . . . . . . 169 5.5.3 Receiver Model and Derivation . . . . . . . . . . . . . . . . . . . . . . 172 5.5.4 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.5.4.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . 183 5.5.4.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . 184 5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6 Block Scrambling CDMA System Model and Derivation in the Uplink Multipath Rayleigh Fading Channel 195 6.1 Transmitter System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.2 Channel Model and Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 199 6.3 Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 6.4 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.4.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210 6.4.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 7 BSMA-CDMA System Model and Mathematical Derivation in the Downlink Multipath Rayleigh Fading 219 7.1 Transmitter System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219 7.2 Channel Model and Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 224 7.3 Receiver Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 7.4 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 7.4.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 7.4.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 8 Using IFFT to Achieve The Second De-modulator in The Receiver 249 8.1 BSMA with IFFT Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 8.2 BS-CDMA with IFFT Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . 254 9 Block Scrambling Multiple Access System Model and Mathematical Derivation in the Downlink Doppler e ect Channel 261 9.1 Transmitter System Model and Derivation . . . . . . . . . . . . . . . . . . . . 261 9.2 Channel Model and Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 265 9.3 Receiver Model and Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . 267 9.4 SNR and BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 9.4.1 SNR Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 9.4.2 BER Calculate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 10 Conclusion 300 Bibliography 303 A OFDM With or Without Cyclic Pre x Derivation 307 A.1 CP Duration Larger Than Channel Impulse Response . . . . . . . . . . . . . 307 A.2 OFDM Without CP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 B Noise Derivation 319 B.1 Theoretical System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 B.2 Physically Realizable System Model . . . . . . . . . . . . . . . . . . . . . . . 329 C Canonical Representations of Band-pass Signal 339 C.1 Hilbert Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339 C.2 Pre-envelope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 C.3 Canonical Representations of Band-pass Singals . . . . . . . . . . . . . . . . . 341 D Mean of nk;n;I (t) and nk;n;Q(t) 344 E Multipath Fading Channel 345 F Integral of e^[au^2] 349 G Asynchronous Delay Derivation in AWGN Dhannel 351 H Receiver with In-phase and Quadrature Component Derivation 353 I Conditions of Physically Realizable System 367

    [1] Andreas F. Molisch, ”Wireless Communications,” Wiley, pp. 418 - 425, 2004.
    [2] Sanjit K. Mitra, ”Digital Signal Processing: A Computer Based Approach,” McGraw- Hill, pp. 233 - 274, 2006.
    [3] Wei-Cheng Huang, ”Complementary Coded OFDMA Systems,” Master Thesis of National Sun Yat-sen University, July, 2007.
    [4] Yi-Chung Ho, ”On Doppler and Multipath Resilient Bandwidth-Efficient Multiple Access Technologies,” Master Thesis of National Cheng-Kung University, November, 2010.
    [5] Simon Haykin, ”Communications Systems,” Wiley, pp. 64 - 66 ; 725 - 730, 2007.
    [6] Hsiao-Hwa Chen, ”Spread Spectrum Lecture,” 2002.
    [7] Richard V. Nee, Ramjee Prasad, ”OFDM for Wireless Multimedia Communications,” Artech House, p.62, 2000.
    [8] Hassan Zareian, Vahid T. Vakili, ”Analytical EVM, BER, and TD Performances of The OFDM Systems in The Presence of Jointly Nonlinear Distortion and IQ Imbalance,” Annals of Telecommunications, vol. 64, pp. 753 - 762, May, 2009.
    [9] Gerakoulis Diakoumis, Paola Salmi, ”An Interference Suppressing OFDM System for Ultra Wide Bandwidth Radio Channels,” Ultra Wideband Systems and Technologies, IEEE Conference on, pp. 259 - 264, May, 2002.
    [10] Gerakoulis Diakoumis, Pan Liu, Bar-Ness Yeheskel, ”Comparing The Effect of Carrier Frequency Offset on OFDM and Single-Carrier Block Transmission in AWGN Channels,” Globecom, IEEE Conference on, pp. 1 - 5, November, 2007.
    [11] Sergio Benedetto, Ezio Biglieri, ”Principles of Digital Transmission : With Wireless Applications,” Springer, pp. 219, 1999.
    [12] Xianbin Wang, Yiyan Wu, Jean-Yves Chouinard, Hsiao-Chun Wu, ”On The Design and Performance Analysis of Multisymbol Encapsulated OFDM Systems,” Vehicular Technology, IEEE Transactions on, vol. 55, Issue. 3, pp. 990 - 1002, May, 2006.
    [13] ETSI TS 136 211 V9.1.0, ”Base Station (BS) Radio Transmission and Reception,” pp. 81, July, 2010.
    [14] ETSI TS 136 104 V9.4.0, ”User Equipment (UE) Radio Transmission and Reception,” pp. 159 - 160, 2010.
    [15] 3GPP TD 25.814 (V7.1.0), ”Physical Layer Aspects for Evolved Universal Terrestrial Radio Access (E-UTRA),” pp. 20-22 ; 26,2006.
    [16] Kenneth W. Martin, ”Complex Signal Processing is Not Complex,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 51, Issue. 9, pp. 1823 - 1836, September, 2004.
    [17] ETSI TS 136 211 V9.1.0, ”Physical Channels and Modulation,” pp. 79, 2010.
    [18] Ahmad R. S. Bahai, Burton R. Saltzberg, Mustafa Ergen ”Multi-Carrier Digital Communications Theory and Applications of OFDM,” Baker and Taylor Books, pp. 20 - 25, 1999.
    [19] Earl McCune, ”Practical Digital Wireless Signals,” Cambridge University Press, 2010.
    [20] Wei Zhang, Xiang-Gen Xia, P. C. Ching, ”Optimal Training and Pilot Pattern Design for OFDM Systems in Rayleigh Fading,” Broadcasting, IEEE Transactions on, vol. 52, Issue. 4, pp. 505 - 514, December, 2006.
    [21] Wei Zhang, Xiang-Gen Xia, Ching P.C. , ”Performance Analysis of Equalized OFDM Systems in Rayleigh Fading,” Wireless Communications, IEEE Transactions on, vol. 1, Issue. 2, pp. 721 - 732, October, 2002.
    [22] Kaiser Stefan, Krzymien Witold A. , ”Performance Effects of The Uplink Asynchronism in a Spread Spectrum Multi-carrier Multiple Access System,” European Transactions on Telecommunications, vol. 10, Issue. 4, pp. 399-406, August, 1999.
    [23] Andrea M. Tonello, Nicola Laurenti, Silvano Pupolin, ”Analysis of The Uplink of an Asynchronous Multi-user DMT OFDMA System Impaired by Time Offsets, Frequency Offsets, and Multi-path Fading,” IEEE Vehicular Technology Conference, VTC, vol. 3, pp. 1094-1009, Septmber, 2000.
    [24] Peter Hoeher, ”A Statistical Discrete-Time Model For The WSSUS Multipath Channel,” Vehicular Technology, IEEE Transactions on, vol. 41, Issue. 4, pp. 461-468, March, 1992.
    [25] Erik Haas, ”Aeronautical Channel Modeling,” Vehicular Technology, IEEE Transactions on, vol. 51, Issue. 2 pp. 254-264, March, 2002.
    [26] Liang Dong, Guanghan Xu, Hao Ling, ”Prediction of Fast Fading Mobile Radio Channels in Wideband Communication Systems,” GLOBECOM ’01. IEEE, vol. 6, pp. 3287-3291, August, 2001.
    [27] William C. Jakes, ”Microwave Mobile Communications,” IEEE Press, pp. 16-17, January, 1994.
    [28] Ye Li, Leonard J. Cimini Jr, ”Bounds on The Interchannel Interference of OFDM in Time-Varying Impairments,” Communications, IEEE Transactions on, vol. 49, Issue. 3 pp. 401-404, August, 2002.
    [29] Jia-Chin Lin, ”Channel Estimation for Wireless OFDM Communications,” InTech, 2010.
    [30] Heidi Steendam, Marc Moeneclaey, ”Analysis and Optimization of The Performance of OFDM on Frequency-Selective Time-Selective Fading Channels,” Communications, IEEE Transactions on, vol. 47, Issue. 12, pp. 1811 - 1819, December, 1999.
    [31] Rodger E. Ziemer, William H. Tranter, ”Principles of Communications: Systems, Modulation, and Noise,” Wiley, pp. 55, 2008.
    [32] Simon Haykin, Barry V. Veen, ”Signals and Systems,” Wiley, pp. 616 - 630, 2005.
    [33] Raymond E. A. C. Paley, Norbert Wiener, ”Fourier Transforms in The Complex Domain,” American Mathematical Society, pp. 16 - 17, 1934.
    [34] Norbert Wiener, ”Extrapolation, Interpolation, and Smoothing of Stationary Time Series,” Technology Press of The Massachusetts Institute of Technology, pp. 36 - 37, 1964.
    [35] William M. Siebert, ”Circuits, Signals and Systems,” McGraw-Hill, pp. 298 - 301, 471 - 479, 1986.
    [36] Ravi Kumar, ”Signals and Systems,” PHI learning, pp. 244 - 245, 2009.
    [37] Joseph J. DiStefano, Allen R. Stubberud, Ivan J. Williams, ”Feedback and Control Systems,” McGraw-Hill, pp. 57, 1995.
    [38] M. J. Gingell, ”Single Sideband Modulation Using Sequence Asymmetric Polyphase Networks,” Elect. Commun. , vol. 48, no.1-2, pp. 21-25, 1973.
    [39] Kenneth W. Martin, ”Approximation of Complex IIR Bandpass Filters Without Arithmetic Symmetry,” Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 52, Issue. 4, pp. 794 - 803, April, 2005.
    [40] Jan Crols, Michiel S. J. Steyaert, ”Low-IF Topologies for High-Performance Analog Front Ends of Fully Integrated ,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , vol. 45, Issue. 3, pp. 269 - 282, March, 1998.
    [41] Thomas H. Crystal, Leonard Ehrman, ”The Design and Applications of Digital Filters With Complex Coefficients,” Audio and Electroacoustics, IEEE Transactions on, vol. 16, Issue. 3, pp. 315 - 320, September, 1968.

    下載圖示 校內:2016-09-02公開
    校外:2016-09-02公開
    QR CODE