簡易檢索 / 詳目顯示

研究生: 陳壹純
Chen, Yi-Chun
論文名稱: 介白素-20可溶性受體基因轉殖鼠在臨床上的意義
Implication of Transgenic Mice for IL-20 Soluble Receptor in Clinics
指導教授: 張明熙
Chang, Ming-Shi
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 68
中文關鍵詞: 介白素-20基因轉殖鼠
外文關鍵詞: IL-20, transgenic mice
相關次數: 點閱:48下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 介白素-19( Interleukine-19;IL-19)及IL-20與許多發炎反應疾病息息相關,其中IL-19已知與局部發炎反應疾病,例如乾癬以及氣喘相關。而實驗室先前的研究指出,以內毒素(Endotoxin;Lipopolysaccride)誘發小鼠敗血性休克(LPS-induced septic shock)的動物實驗中,IL-19也參與組織傷害的過程;而IL-20已知在乾癬症 (psoriasis)、類風濕性關節炎(Rheumatoid Arthritis)以及動脈粥狀硬化 (Atherosclerosis)等疾病中,參與其中的發炎反應及組織傷害。IL-19以及IL-20皆隸屬於IL-10 family,IL-19與IL-20共用一組接受體複合體傳遞細胞訊息:IL-20R1/IL-20R2,而IL-20還可以透過另一組接受體複合體作用:IL-22R1/ IL-20R2。可溶性受體(soluble receptor),即細胞外接受體的部份,sIL-20R1以及sIL-20R2 ,仍可與IL-19及IL-20結合,而中和其作用。可表達可溶性受體的質體(soluble IL-20R1 plasmid DNA)以電擊(Electroporation)方式送入小鼠體內,在小鼠敗血性休克以及大鼠類風濕性關節炎的實驗動物中,具有中和IL-19以及IL-20的作用,而達到疾病保護的效果。因此我們想藉由建立soluble receptor基因轉殖鼠,在老鼠可以持續過量表現可溶性受體的情況之下,而不以電擊方式送入老鼠體內產生暫時性可溶性受體蛋白,觀察轉殖鼠對於與IL-19以及IL-20相關發炎疾病中可溶性受體在活體老鼠所扮演的角色。未來在治療此類發炎反應疾病是否能有新的醫藥拓展的可能。將smIL-20R2序列接至pcDNA3.1的載體表現系統,以原核胚顯微注射方式製作基因轉殖鼠,抽取尾巴基因進行聚合酶鏈鎖反應(Polymerase Chain Reaction; PCR ),確定小鼠基因確實嵌入smIL-20R2,基因型(Genotype)確定後,再利用ELISA方式偵測smIL-20R2蛋白質於轉殖鼠血清中的表現,用以確定表現型(Phenotype)。當基因轉殖小鼠確定建立完成後再進一步分析smIL-20R2在in vivo中對老鼠敗血性休克病理機制的影響。在本實驗中,將可溶性受體基因轉殖小鼠(smIL-20R2)應用在內毒素誘發敗血性休克小鼠動物模式之中,在LPS誘發後二十四小時,smIL-20R2基因轉殖小鼠於肺臟、肝臟以及腎臟組織的傷害( 嗜中性白血球浸潤強度 )比起對照組Wild
    3
    type ( WT )鼠還要來的低;且在小鼠血清經過生化數據的檢測後,發現肝指數GOT及腎功能指標:BUN、Creatinine的數值,在敗血性休克的情況之下,smIL-20R2基因轉殖小鼠比起對照組WT小鼠也相對的低。由此可知,可溶性受體(smIL-20R2)的蛋白,在敗血性休克的過程當中可能藉由中和IL-19,而使得敗血症病程進展過程降低或是減緩LPS對肺臟、肝臟或是腎臟的傷害,結果顯示smIL-20R2對於敗血性休克確實具有保護作用。

    IL-19 and IL-20 are associated with many inflammatory diseases. Our previous studies showed that IL-19 was involved in tissue injury in mice model with endotoxin shock. We also found that IL-20 was a pleiotropic cytokine with potent inflammatory, angiogenic, and chemoattractive effects, all of which are characteristics of psoriasis, rheumatoid arthritis, and atherosclerosis. In the IL-10 family, IL-19 and IL-20 shares receptor complexes. IL-19 and IL-20 are capable of signaling through IL-20R1/IL-20R2 heterodimer and IL-20, but not IL-19, can also use IL-22R1/IL-20R2 receptor complex. Soluble form of the extra-cellular domains of IL-20 receptors, sIL-20R1 and sIL-20R2, can be used to neutralize the activities of IL-19 and IL-20 in vitro and in vivo. Therefore, blocking the biological activities of IL-19 and IL-20 through over-expression of smIL-20R1 or smIL-20R2 in transgenic mice will be a new strategy to study the mechanism of IL-19 and IL-20-associated diseases. To select the smIL-20R2 transgenic mice, we analyzed genomic DNA by using PCR with certain primers and performed ELISA to detect the serum level of smIL-20R2 in the mice. After analyzing the genotype and phenotype, smIL20R2 transgenic mice are confirmed to be successfully established. We applied LPS-induced septic shock animal model on sIL-20R2 transgenic mice to investigate whether sIL-20R2 can neutralize IL-19-induced effects and protect vital organs from damage. We found neutrophil infiltration in lung, liver and kidney is decreased in smIL-20R2 transgenic mice compared to control mice. The transcript and protein of sepsis-induced IL-19 in lung tissue was decreased. Twenty-four hours after induction of septic shock, the serum levels of GPT, BUN and Creatinine in smIL-20R2 transgenic mice are lower than those of control mice. In conclusion, over-expression of smIL-20R2 can indeed decreased IL-19 expression and ameliorate neutrophil infiltration in lung, liver and kidney after sepsis induction. Besides, over-expressed smIL-20R2 in transgenic mice can also prevent liver and kidney from damage in the progression of septic shock. Theses results suggest increased smIL-20R2 in transgenic mice can protect lung, liver, kidney from IL-19 mediated tissue damage in septic shock.

    中文摘要…………………………………………………………….. 2 英文摘要……………………………………………………………... 4 誌謝…………………………………………………………………… 6 目錄…………………………………………………………………… 7 圖目錄………………………………………………………………… 10 表目錄………………………………………………………………… 12 附錄目錄……………………………………………………………… 13 縮寫檢索表…………………………………………………………… 15 第一章 緒論…………………………………………………………... 15 1-1 細胞激素 15 1-2 IL-10家族以及IL-19介紹 16 1-3 IL-19 以及 IL-20 受體介紹 17 1-4 研究動機及目的 17 第二章 實驗方法以及材料…………………………………………… 19 2-1實驗材料……………………………………………………………. 19 2-1-1 實驗動物C57BL/6小鼠 19 2-1-2 構築smIL-20R2可溶性受體基因轉殖小鼠之質體背景 19 2-1-3 專一性抗體 (Specific antibodies) 19 2-1-4 Electrophoresis Buffer 19 2-1-5 Western Blot Buffer 21 2-1-6 蛋白質來源 (Protein Source) 21 2-1-7 構築smIL-20R1可溶性受體基因轉殖小鼠之質體背景 21 2-2 實驗方法…………………………………………………………. 22 2-2-1 用以生產smIL-20R2基因轉殖小鼠之構築質體製備方法 22 2-2-2 smIL-20R2可溶性受體基因轉殖鼠的建立-基因型(Genotype)的確認 22 2-2-3 smIL-20R2可溶性受體基因轉殖鼠的建立-表現型(Phenotype)的確認 22 2-2-4 smIL-20R2可溶性受體基因轉殖鼠的繁衍 23 2-2-5 內毒素誘導敗血性休克小鼠動物模式建立 23 (LPS-induced septic shock animal model) 2-2-6 內毒素誘導敗血性休克小鼠血清檢體的製備 24 2-2-7 內毒素誘導敗血性休克小鼠器官組織檢體的處理 24 2-2-8 偵測內毒素誘導敗血性休克小鼠血清中TNF-表現 24 2-2-9 反轉錄聚合酶鍊反應(Reverse-Transcriptional Polymerase Chain 24 Reaction ; RT-PCR ) 2-2-10 西方轉漬法 (Western Blotting) 25 2-2-11 Myeloperoxidase (MPO/過氧化物酶) assay 26 第三章 結果………………………………………………………….. 28 3-1 偵測smIL-20R2可溶性受體基因轉殖鼠的基因型及表現型。……… 28 3-2 六至八週C57BL/6小鼠在內毒素誘導敗血性休克動物模式 實驗劑量確認。………………………………………………... 28 3-3 smIL-20R2可溶性受體基因轉殖鼠以及對照組WT小鼠在內毒素 (LPS) 40mg/kg腹腔注射後三小時的老鼠型態。………………….. 29 3-4 誘導敗血性休克模式後,smIL-20R2基因轉殖鼠與對照組 WT小鼠臟器傷害的差異。………………………………… 29 3-5 誘導敗血性休克模式後,smIL-20R2基因轉殖鼠與對照組 WT小鼠肝指數(S-GOT、S-GPT)以及BUN、Creatinine生 化數值分析………………………………………………… 30 3-6 誘導敗血性休克模式後,smIL-20R2基因轉殖鼠與對照組 WT小鼠肺部組織嗜中性白血球浸潤強度比較。……………… 30 3-7 誘導敗血性休克模式後,smIL-20R2基因轉殖鼠與對照組 WT小鼠肺部組織IL-19以及IL-20基因表現量之差異。………… 31 3-8 誘導敗血性休克模式後,smIL-20R2基因轉殖鼠與對照組 WT小鼠肺部組織IL-19以及IL-20蛋白表現量差異。…………… 32 3-9 誘導敗血性休克模式後,smIL-20R2基因轉殖鼠與對照組 WT小鼠肺部組織細胞激素及趨化激素基因表現量差異。……… 32 3-10 誘導敗血性休克模式後,smIL-20R2基因轉殖鼠與對照組 WT小鼠血清中TNF-的表現量。……………………………… 33 第四章 討論……………………………………………………………. 34 參考文獻………………………………………………………………… 37 圖表……………………………………………………………………… 42 表格……………………………………………………………………… 60 附錄……………………………………………………………………… 61 自述……………………………………………………………………… 68

    1. Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88(5): 1747-54. 1991
    2. Rubinstein M, Dinarello CA, Oppenheim JJ, Hertzog P. Recent advances in cytokines, cytokine receptors and signal transduction. Cytokine Growth Factor Rev 9(2): 175-81. 1998
    3. Gesser B, Leffers H, Jinquan T, Vestergaard C, Kirstein N, Sindet-Pedersen S, Jensen SL, Thestrup-Pedersen K, Larsen CG. Identification of functional domains on human interleukin 10. Proc Natl Acad Sci U S A 94(26): 14620-5. 1997
    4. Wanidworanun C, Strober W. Predominant role of tumor necrosis factor-alpha in human monocyte IL-10 synthesis. J Immunol 151(12): 6853-61. 1993
    5. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174(5): 1209-20. 1991
    6. de Waal Malefyt R, Figdor CG, Huijbens R, Mohan-Peterson S, Bennett B, Culpepper J, Dang W, Zurawski G, de Vries JE. Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by IFN-gamma or IL-10. J Immunol 151(11): 6370-81. 1993
    7. Conti P, Kempuraj D, Frydas S, Kandere K, Boucher W, Letourneau R, Madhappan B, Sagimoto K, Christodoulou S, Theoharides TC. IL-10 subfamily members: IL-19, IL-20, IL-22, IL-24 and IL-26. Immunol Lett 88(3): 171-4. 2003
    8. Hsu DH, de Waal Malefyt R, Fiorentino DF, Dang MN, Vieira P, de Vries J, Spits H, Mosmann TR, Moore KW. Expression of interleukin-10 activity by Epstein-Barr virus protein BCRF1. Science 250(4982): 830-2. 1990
    9. MacNeil IA, Suda T, Moore KW, Mosmann TR, Zlotnik A. IL-10, a novel growth cofactor for mature and immature T cells. J Immunol 145(12): 4167-73. 1990
    10. Mosmann TR, Moore KW. The role of IL-10 in crossregulation of TH1 and TH2 responses. Immunol Today 12(3): A49-53. 1991
    11. Go NF, Castle BE, Barrett R, Kastelein R, Dang W, Mosmann TR, Moore KW, Howard M. Interleukin 10, a novel B cell stimulatory factor: unresponsiveness of X chromosome-linked immunodeficiency B cells. J Exp Med 172(6): 1625-31. 1990
    12. Thompson-Snipes L, Dhar V, Bond MW, Mosmann TR, Moore KW, Rennick DM. Interleukin 10: a novel stimulatory factor for mast cells and their progenitors. J Exp Med 173(2): 507-10. 1991
    13. Rousset F, Garcia E, Defrance T, Peronne C, Vezzio N, Hsu DH, Kastelein R, Moore KW, Banchereau J. Interleukin 10 is a potent growth and differentiation factor for activated human B lymphocytes. Proc Natl Acad Sci U S A 89(5): 1890-3. 1992
    14. Gallagher G, Dickensheets H, Eskdale J, Izotova LS, Mirochnitchenko OV, Peat JD, Vazquez N, Pestka S, Donnelly RP, Kotenko SV. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun 1(7): 442-50. 2000
    15. Liao YC, Liang WG, Chen FW, Hsu JH, Yang JJ, Chang MS. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J Immunol 169(8): 4288-97. 2002
    16. Liao SC, Cheng YC, Wang YC, Wang CW, Yang SM, Yu CK, Shieh CC, Cheng KC, Lee MF, Chiang SR, Shieh JM, Chang MS. IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J Immunol 173(11): 6712-8. 2004
    17. Hsing CH, Chiu CJ, Chang LY, Hsu CC, Chang MS. IL-19 is involved in the pathogenesis of endotoxic shock. Shock 29(1): 7-15. 2008
    18. Dumoutier L, Leemans C, Lejeune D, Kotenko SV, Renauld JC. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J Immunol 167(7): 3545-9. 2001
    19. Parrish-Novak J, Xu W, Brender T, Yao L, Jones C, West J, Brandt C, Jelinek L, Madden K, McKernan PA, Foster DC, Jaspers S, Chandrasekher YA. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J Biol Chem 277(49): 47517-23. 2002
    20. Hsu YH, Li HH, Hsieh MY, Liu MF, Huang KY, Chin LS, Chen PC, Cheng HH, Chang MS. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum 54(9): 2722-33. 2006
    21. Glasser SW, Korfhagen TR, Bruno MD, Dey C, Whitsett JA. Structure and expression of the pulmonary surfactant protein SP-C gene in the mouse. J Biol Chem 265(35): 21986-91. 1990
    22. Bedard PM, Zweiman B, Atkins PC. Quantitation by myeloperoxidase assay of neutrophil accumulation at the site of in vivo allergic reactions. J Clin Immunol 3(1): 84-9. 1983
    23. Car BD, Eng VM, Schnyder B, Ozmen L, Huang S, Gallay P, Heumann D, Aguet M, Ryffel B. Interferon gamma receptor deficient mice are resistant to endotoxic shock. J Exp Med 179(5): 1437-44. 1994
    24. Ruggiero V, Chiapparino C, Manganello S, Pacello L, Foresta P, Martelli EA. Beneficial effects of a novel platelet-activating factor receptor antagonist, ST 899, on endotoxin-induced shock in mice. Shock 2(4): 275-80. 1994
    25. Keel M, Ungethum U, Steckholzer U, Niederer E, Hartung T, Trentz O, Ertel W. Interleukin-10 counterregulates proinflammatory cytokine-induced inhibition of neutrophil apoptosis during severe sepsis. Blood 90(9): 3356-63. 1997
    26. Taneja R, Parodo J, Jia SH, Kapus A, Rotstein OD, Marshall JC. Delayed neutrophil apoptosis in sepsis is associated with maintenance of mitochondrial transmembrane potential and reduced caspase-9 activity. Crit Care Med 32(7): 1460-9. 2004
    27. Sayeed MM. Delay of neutrophil apoptosis can exacerbate inflammation in sepsis patients: cellular mechanisms. Crit Care Med 32(7): 1604-6. 2004
    28. Riedemann NC, Guo RF, Ward PA. Novel strategies for the treatment of sepsis. Nat Med 9(5): 517-24. 2003
    29. Michie HR, Spriggs DR, Manogue KR, Sherman ML, Revhaug A, O'Dwyer ST, Arthur K, Dinarello CA, Cerami A, Wolff SM, et al. Tumor necrosis factor and endotoxin induce similar metabolic responses in human beings. Surgery 104(2): 280-6. 1988
    30. Meduri GU, Kanangat S, Stefan J, Tolley E, Schaberg D. Cytokines IL-1beta, IL-6, and TNF-alpha enhance in vitro growth of bacteria. Am J Respir Crit Care Med 160(3): 961-7. 1999
    31. Kanangat S, Meduri GU, Tolley EA, Patterson DR, Meduri CU, Pak C, Griffin JP, Bronze MS, Schaberg DR. Effects of cytokines and endotoxin on the intracellular growth of bacteria. Infect Immun 67(6): 2834-40. 1999
    32. Schwabe RF, Brenner DA. Mechanisms of Liver Injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am J Physiol Gastrointest Liver Physiol 290(4): G583-9. 2006
    33. Diehl AM. Cytokine regulation of liver injury and repair. Immunol Rev 174160-71. 2000
    34. Irwin RS, Cerra FB, Rippe JM. Irwin and Rippe's Intensive Care Medicine. 5th
    Ed. Lippincott Williams & Wilkins. Hagerstown, MD. 2003.
    35. Marino PL. The ICU Book. 2nd Ed. Lippincott Williams & Wilkins.Hagerstown,
    MD. 1998.

    下載圖示 校內:2018-08-06公開
    校外:2018-08-06公開
    QR CODE