| 研究生: |
余長紘 Yu, Chang-Hong |
|---|---|
| 論文名稱: |
不同外長軸/外短軸長度比SUS 304不鏽鋼橢方管在不同彎曲方向循環彎曲負載下行為之實驗研究 Experimental Study on the Behavior of SUS 304 Stainless Steel Oval Rectangular Tubes with Different Outer Long Axis/Outer Short Axis Length Ratios under Cyclic Bending in Different Bending Directions |
| 指導教授: |
潘文峰
Pan, Wen-Fung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | SUS 304不鏽鋼橢方管 、彎曲方向 、外長軸/外短軸長度比 、循環彎曲 、彎矩 、曲率 、外短軸變化 、循環彎曲至斷裂圈數 |
| 外文關鍵詞: | SUS 304 stainless steel oval rectangular tubes, bending direction, outer major/minor axis length ratio, cyclic bending, curvature, short axis variation, number of cycles required to initiate fracture, moment |
| 相關次數: | 點閱:86 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究不同外長軸/外短軸長度比的SUS 304不鏽鋼橢方管在不同彎曲方向循環彎曲負載下的響應與損壞,其中以彎矩-曲率和外短軸變化(外短軸變化量/原始外短軸長度)-曲率來呈現響應,而以控制曲率-循環彎曲至斷裂圈數來呈現損壞。本研究探討的橢方管參數如下:不同外長軸/外短軸長度比:1.5、2.0、2.5和3.0,不同彎曲方向(橢方管長軸方向與彎矩方向的夾角):0°、30°、60°和90°,而橢方管的壁厚皆為0.7 mm。實驗皆採用對稱控制曲率循環彎曲負載,而控制的曲率有:±0.6、±0.65、±0.7、±0.75和±0.8 m⁻¹。
從彎矩-曲率的關係中可以發現,若固定彎曲方向,外長軸/外短軸長度比 = 1.5時,彎矩-曲率的迴圈會很快的穩定,至於其它的比值則需要一些循環圈數後,彎矩-曲率的迴圈才會穩定;若固定外長軸/外短軸長度比時,越大的彎曲方向,會呈現出越大的彎矩-曲率迴圈。從外短軸變化-曲率的關係中可以發現,若固定彎曲方向,而外長軸/外短軸長度比越大時,外短軸變化增加就越快;若固定外長軸/外短軸長度比時,越大的彎曲方向(除了90°外),會呈現出越小的外短軸變化。從控制曲率-循環彎曲至斷裂圈數的關係中可以發現,當外長軸/外短軸長度比增加時,循環至斷裂的圈數就會增加,而當彎曲方向變大時,循環至斷裂的圈數則會減少。本文根據實驗控制曲率-循環彎曲至斷裂圈數和外長軸/外短軸長度比與彎曲方向之間的關係,推導出理論方程式來描述控制曲率-循環彎曲至斷裂圈數的關係,在與實驗數據比對之後發現,理論和實驗結果相當吻合。
This paper studies the response and failure of SUS 304 stainless steel oval rectangular tubes with different outer major/minor axis length ratios under cyclic bending loads in different bending directions. The response is presented in terms of moment-curvature and short axis variation (variation in the outer minor axis length/original outer minor axis length)-curvature, while the failure is presented in terms of controlled curvature-number of cycles required to initiate fracture. The parameters of the oval rectangular tubes stud-ied are as follows: different outer major/minor axis length ratios: 1.5, 2.0, 2.5, and 3.0; different bending directions (angle between the outer major axis of the oval rectangular tube and the bending moment direction): 0°, 30°, 60°, and 90°; and the wall thickness of the oval rectangular tubes is 0.7 mm. The experiments all adopt symmetrical controlled curvature cyclic bending loads, and the controlled curvatures are: ±0.6, ±0.65, ±0.7, ±0.75, and ±0.8 m⁻¹.
From the moment-curvature relationship, it can be observed that when the bending direc-tion is fixed, for the outer major/minor axis length ratio of 1.5, the moment-curvature loop stabilizes quickly. For other ratios, the moment-curvature loop stabilizes after some cycles. When the outer major/minor axis length ratio is fixed, a larger bending direction results in a larger moment-curvature loop. From the short axis variation-curvature rela-tionship, it can be observed that when the bending direction is fixed, a larger outer ma-jor/minor axis length ratio leads to a faster increase in the short axis variation. When the outer major/minor axis length ratio is fixed, a larger bending direction (except for 90°) results in a smaller short axis variation. From the controlled curvature-number of cycles required to initiate fracture relationship, it can be observed that as the outer major/minor axis length ratio increases, the number of cycles required to initiate fracture increases. Conversely, as the bending direction increases, the number of cycles required to initiate fracture decreases. Based on the experimental controlled curvature-number of cycles re-quired to initiate fracture relationship, this paper derives a theoretical equation to de-scribe the aforementioned relationship. Comparison with experimental data shows that the theoretical and experimental results are in good agreement.
1. L. G. Brazier, “On the flexure of thin cylindrical shells and other thin sections”, Proceedings of the Royal Society, Series A, Vol. 116, No. 773, pp. 104-114 (1927).
2. S. Kyriakides and P. K. Shaw, “Response and stability of elastoplastic circular pipes under combined bending and external pressure”, International Journal of Solids and Structures, Vol. 18, No. 11, pp. 957-973 (1982).
3. P. K. Shaw and S. Kyriakides, “Inelastic analysis of thin-walled tubes under cy-clic bending”, International Journal of Solids and Structures, Vol. 21, No. 11, pp. 1073-1100 (1985).
4. S. Kyriakides and P. K. Shaw, “Inelastic buckling of tubes under cyclic loads”, Journal of Pressure Vessel Technology, Vol. 109, No. 2, pp. 169-178 (1987).
5. W. F. Pan, T. R. Wang and C. M. Hsu, “A curvature-ovalization measurement apparatus for circular tubes under cyclic bending”, Experimental Mechanics, Vol. 38, No. 2, pp. 99-102 (1998).
6. W. F. Pan and Y. S. Her, “Viscoplastic collapse of thin-walled tubes under cyclic bending”, ASME Journal of Engineering Materials and Technology, Vol. 120, No. 4, pp. 287-290 (1998).
7. W. F. Pan and C. H. Fan, “An experimental study on the effect of curvature-rate at preloading stage on subsequent creep or relaxation of thin-walled tubes under pure bending”, JSME International Journal, Series A, Vol. 41, No. 4, pp. 525-531 (1998).
8. K. L. Lee, W. F. Pan and J. N. Kuo, “The influence of the diameter-to-thickness ratio on the stability of circular tubes under cyclic bending”, International Journal of Solids and Structures, Vol. 38, No. 14, pp. 2401-2413 (2001).
9. W. F. Pan and K. L. Lee, “The effect of mean curvature on the response and collapse of thin-walled tubes under cyclic bending”, JSME International Jour-nal, Series A, Vol. 45, No. 2, pp. 309-318 (2002).
10. K. H. Chang, C. M. Hsu, S. R. Sheu and W. F. Pan, “Viscoplastic response and collapse of 316L stainless steel under cyclic bending”, Steel and Composite Structures, Vol. 5, No. 5, pp. 359-374 (2005).
11. K. L. Lee, C. M. Hsu, W. F. Pan, “Endochronic Simulation for the response of 1020 carbon steel tubes under symmetric and unsymmetric cyclic bending with or without external pressure”, Steel and Composite Structures, Vol. 8, No. 2, pp. 99-114 (2008).
12. E. Corona and S. Kyriakides, “An experimental investigation of the degradation and buckling of circular tubes under cyclic bending and external pressure”, Thin-Walled Structures, Vol. 12, No. 3, pp. 229-263 (1991).
13. K. L. Lee, C. Y. Hung and W. F. Pan, “Variation of ovalization for sharp-notched circular tubes under cyclic bending”, Journal of Mechanics, Vol. 26, No. 3, pp. 403- 411 (2010).
14. K. L. Lee, C. M. Hsu and W. F. Pan, “The influence of diameter-to-thickness ra-tios on the response and collapse of sharp-notched circular tubes under cyclic bending”, Journal of Mechanics, Vol. 28, No. 3, pp. 461-468 (2012).
15. K. L. Lee, C. M. Hsu and W. F. Pan, “Viscoplastic collapse of sharp-notched circular tubes under cyclic bending”, Acta Mechanics Solida Sinica, Vol. 26, No. 6, pp. 629- 641 (2013).
16. K. L. Lee, C. C. Chung and W. F. Pan, “Growing and critical ovalization for sharp-notched 6061-T6 aluminum alloy tubes under cyclic bending”, Journal of Chinese Institute of Engineers, Vol. 39, No. 8, pp. 926-935 (2016).
17. K. L. Lee, K. H. Chang and W. F. Pan, “Effect of notch depth and direction on stability of local sharp-notched circular tubes subjected to cyclic bending”, In-ternational Journal of Structural Stability and Dynamics, Vol. 18, No. 7, 1850090 [23 pages] (2018).
18. K. L. Lee, Q. Y. Wen and W. F. Pan, “Response of round-hole tubes with differ-ent hole sizes and positions under pure bending relaxation”, Informatica Journal, Vol. 32, No. 8, pp. 48-65 (2021).
19. K. L. Lee, C. M. Hsu and W. F. Pan, “Response of sharp-notched circular tubes under bending creep and relaxation”, Mechanical Engineering Journal, Vol. 1, No. 2, pp. 1-14 (2014).
20. Yu, M. C., and Pan, W. F., “Failure of Elliptical Tubes with Different Long–Short Axis Ratios under Cyclic Bending in Different Directions,” Metals, Vol. 13, No. 11, 1891(2023).