簡易檢索 / 詳目顯示

研究生: 林俊男
Lin, Jiun-Nan
論文名稱: 利用紫外線及熱誘導法製備包裹奈米金屬粒子的高分子電紡絲
UV and Thermally Induced in-situ Synthesis of Metallic Nanoparticles Encapsulated in Electrospun Polymer Nanofibers
指導教授: 郭昌恕
Kuo, Changshu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 95
中文關鍵詞: 高分子奈米絲奈米粒子電紡絲
外文關鍵詞: Nanoparticle, Nanofiber, Electrospinning
相關次數: 點閱:89下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 經由紫外光及熱誘導法,在聚甲基丙烯酸甲酯(PMMA)的高分子奈米電紡絲纖維中,包裹製備奈米銀粒子。藉由採用這種定位合成奈米粒子的方法,可以穩定奈米粒子,防止進一步凝聚成更大的粒子。製備高分子奈米纖維團,是先調配PMMA和金屬前驅物(AgNO3)在MEK/methanol(1:1)的混合溶解溶劑,再搭配電紡絲的製程。當這些高分子奈米纖維被施以紫外光源的照射或熱處理的方式,銀離子就被還原成銀原子。這些包裹在高分子奈米纖維中的奈米粒子在不同的前驅物濃度、照光時間、加熱時間以及加熱溫度下的形成位置和大小,在紫外可見光譜儀、穿透式和掃瞄式電子顯微鏡等儀器的輔助下,加以分析研究。此外,在本論文中亦探討不同參數對於PMMA高分子電紡絲形態所造成的影響。

    Silver nanoparticles were fabricated and encapsulated in electrospun polymer nanofibers via the solid-state synthetic approach. Poly(methyl methacrylate) (PMMA) nanofibers were first prepared by the electrospinning process from a solution containing PMMA and metal precursors (AgNO3). Co-solvent systems were employed in order to optimize the electrospinning processes and fiber diameters. Reduction reactions of metal precursors were then conducted by the UV irradiation or the heat treatment directly to the solidified fiber mats. In this research work, silver nanoparticles encapsulated in electrospun polymer fibers were synthesized and investigated in terms of experimental parameters which influence the transformation of polymer solutions into nanofibers during electrospinning, including PMMA concentrations, applied voltages, flow rates and AgNO3 concentrations. Through heat treatments or UV irradiations, encapsulated silver nanoparticles synthesized from different precursor concentrations, heating times, heating temperatures or exposure time were also investigated in SEM, TEM and UV-visible spectroscopy.

    誌謝......................................................................I 中文摘要.................................................................II ABSTRACT................................................................III TABLE OF CONTENTS........................................................IV LIST OF TABLES...........................................................VI LIST OF ILLUSTRATIONS...................................................VII 1. INTRODUCTION.....................................................1 1.1. NANOMATERIALS....................................................1 1.2. METALLIC NANOPARTICLES...........................................3 1.3. ELECTROSPINNING..................................................4 2. LITERATURE REVIEWS AND THEORY....................................8 2.1. SYNTHESIS OF NANOPARTICLES.......................................8 2.2. LOCALIZED SURFACE PLASMON RESONANCE (LSPR)......................13 2.3. NANOPARTICLES ENCAPSULATED IN ELECTROSPUN NANOFIBERS............17 2.4. RESEARCH MOTIVATION.............................................21 3. EXPERIMENTS.....................................................22 3.1. MATERIALS AND INSTRUMENTS.......................................22 3.1.1. Materials .......................................................22 3.1.2. Instruments.....................................................22 3.2. EXPERIMENT PROCESS ..............................................24 3.2.1. PMMA/AgNO3 solutions preparation................................24 3.2.2. Electrospinning apparatus setup.................................24 3.2.3. Reduction of Ag nanoparticles embedded in PMMA nanofibers.......24 3.3. ANALYSIS INSTRUMENTS............................................28 3.3.1. Scanning Electron Microscopy (SEM): (Philips XL40 FE-SEM).......28 3.3.2. Transmission Electron Microscopy (TEM): (Hitachi HF-2000).......28 3.3.3. UV-visible Spectrometer (UV-visible): (Perking Elmer Lambda 35).29 3.3.4. Fourier Transform Infrared Spectrometer (FT-IR): (Jasco -200E)..29 3.3.5. Differential Scanning Calorimetry (DSC): (TA Instrument -2920)..30 4. RESULTS AND DISCUSSIONS.........................................31 4.1. PARAMETER INFLUENCES IN ELECTROSPINNING PROCESS.................31 4.1.1. Polymer concentration influence in electrospinning process......31 4.1.2. Applied voltage influence in electrospinning process............36 4.1.3. Flow rate influence in electrospinning process..................40 4.1.4. Silver nitrate concentration influence in electrospinning process ................................................................44 4.2. THERMALLY-INDUCED SYNTHESIS OF SILVER NANOPARTICLES EMBEDDED IN PMMA NANOFIBERS...............................................................50 4.2.1. Interaction between PMMA and silver ion.........................50 4.2.2. Silver nanoparticle fabricated in PMMA nanofibers by varied heating time.....................................................................52 4.2.3. Silver nanoparticles fabricated in PMMA nanofibers by varied heating temperature..............................................................61 4.2.4. Silver nanoparticle fabricated in PMMA nanofibers with varied AgNO3 concentrations by heat treatment.........................................64 4.3. UV-INDUCED SYNTHESIS OF SILVER NANOPARTICLES EMBEDDED IN PMMA NANOFIBERS...............................................................69 4.3.1. Influence of Electrospun PMMA nanofibers exposed to 253.7nm UV light. ................................................................69 4.3.2. Silver nanoparticle fabricated in PMMA nanofibers by varied UV irradiation time.........................................................73 5. CONCLUSIONS.....................................................78 6. FUTURE WORKS....................................................80 REFERENCE ................................................................81

    1.Hornyak, G. L.; Patrissi, C. J.; Martin, C. R., Fabrication, characterization, and optical properties of gold nanoparticle/porous alumina composites: the nonscattering Maxwell-Garnett limit. Journal of Physical Chemistry B 1997, 101, (9), 1548.

    2.Zheng Peng, L. X. K. S.-D. L., Thermal properties and morphology of a poly(vinyl alcohol)/silica nanocomposite prepared with a self-assembled monolayer technique. Journal of Applied Polymer Science 2005, 96, (4), 1436-1442.

    3.Racka, K.; Gich, M.; Slawska-Waniewska, A.; Roig, A.; Molins, E., Magnetic properties of Fe nanoparticle systems. Journal of Magnetism and Magnetic Materials 2005, 290-291, (Part 1), 127.

    4.Frogley, M. D.; Ravich, D.; Wagner, H. D., Mechanical properties of carbon nanoparticle-reinforced elastomers. Composites Science and Technology 2003, 63, (11), 1647.

    5.Ponce, A. A.; Klabunde, K. J., Chemical and catalytic activity of copper nanoparticles prepared via metal vapor synthesis. Journal of Molecular Catalysis A: Chemical 2005, 225, (1), 1.

    6.Saito, T.; Ohshima, S.; Xu, W.-C.; Ago, H.; Yumura, M.; Iijima, S., Size control of metal nanoparticle catalysts for the gas-phase synthesis of single-walled carbon nanotubes. Journal of Physical Chemistry B 2005, 109, (21), 10647.

    7.Hull, R. V.; Li, L.; Xing, Y.; Chusuei, C. C., Pt nanoparticle binding on functionalized multiwalled carbon nanotubes. Chemistry of Materials 2006, 18, (7), 1780.

    8.Baraton, M.-I.; Merhari, L., Nanoparticles-based chemical gas sensors for outdoor air quality monitoring microstations. Materials Science and Engineering B: Solid-State Materials for Advanced Technology 2004, 112, (2-3 SPEC ISS), 206.

    9.Aigouy, L.; Mortier, M.; Girak, J.; Bourhis, E.; De Wilde, Y.; Corstjens, P.; Tanke, H. J., Field distribution on metallic and dielectric nanoparticles observed with a fluorescent near-field optical probe. Journal of Applied Physics 2005, 97, (10), 104322.

    10.Sharma, A. K.; Gupta, B. D., Fibre-optic sensor based on surface plasmon resonance with Ag-Au alloy nanoparticle films. Nanotechnology 2006, 17, (1), 124.

    11.Pinchuk, A., Optical bistability in nonlinear composites with coated ellipsoidal nanoparticles. Journal of Physics D: Applied Physics 2003, 36, (5), 460.

    12.Carotenuto, G.; Peruta, G. L.; Nicolais, L., Thermo-chromic materials based on polymer-embedded silver clusters. Sensors and Actuators, B: Chemical 2006, 114, (2), 1092.

    13.Kapoor, S.; Joshi, R.; Mukherjee, T., Synthesis and stabilization of cadmium and thallium metal nanoparticles in a polymer matrix. Journal of Colloid and Interface Science 2003, 267, (1), 74.

    14.Wnek, G. E.; Carr, M. E.; Simpson, D. G.; Bowlin, G. L., Electrospinning of Nanofiber Fibrinogen Structures. Nano Lett. 2003, 3, (2), 213-216.

    15.Ching-Yi Chen, J.-W. W. M.-H. H., Polyion Complex Nanofibrous Structure Formed by Self-Assembly of Chitosan and Poly(acrylic acid). Macromolecular Materials and Engineering 2006, 291, (2), 123-127.

    16.Liu, D.; Zhang, H.; Grim, P. C. M.; De Feyter, S.; Wiesler, U. M.; Berresheim, A. J.; Mullen, K.; De Schryver, F. C., Self-Assembly of Polyphenylene Dendrimers into Micrometer Long Nanofibers: An Atomic Force Microscopy Study. Langmuir 2002, 18, (6), 2385-2391.

    17.Jiro Shimizu, T. K., Dynamics and evolution of structure in fiber extrusion. Journal of Applied Polymer Science 2002, 83, (3), 539-558.

    18.Kim, G. M.; Michler, G. H.; Potschke, P., Deformation processes of ultrahigh porous multiwalled carbon nanotubes/polycarbonate composite fibers prepared by electrospinning. Polymer 2005, 46, (18), 7346.

    19.Chronakis, I. S., Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process - A review. Journal of Materials Processing Technology 2005, 167, (2-3), 283.

    20.Sigmund, W.; Yuh, J.; Park, H.; Maneeratana, V.; Pyrgiotakis, G.; Daga, A.; Taylor, J.; Nino, J. C., Processing and structure relationships in electrospinning of ceramic fiber systems. Journal of the American Ceramic Society 2006, 89, (2), 395.

    21.Jo, S. M.; Song, M. Y.; Ahn, Y. R.; Park, C. R.; Kim, D. Y., Nanofibril formation of electrospun TiO2 fibers and its application to dye-sensitized solar cells. Journal of Macromolecular Science - Pure and Applied Chemistry 2005, 42 A, (11), 1529.

    22.Taylor, G. I., Electrically Driven Jets. Proc. R. Soc. London, Ser. A 1969, 20, 1457.

    23.Deitzel, J. M.; Kleinmeyer, J.; Harris, D.; Tan, N. C. B., Effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 2001, 42, (1), 261.

    24.Sukigara, S.; Gandhi, M.; Ayutsede, J.; Micklus, M.; Ko, F., Regeneration of Bombyx mori silk by electrospinning - Part 1: Processing parameters and geometric properties. Polymer 2003, 44, (19), 5721.

    25.Lee, J. S.; Choi, K. H.; Ghim, H. D.; Kim, S. S.; Chun, D. H.; Kim, H. Y.; Lyoo, W. S., Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science 2004, 93, (4), 1638.

    26.Theron, S. A.; Zussman, E.; Yarin, A. L., Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer 2004, 45, (6), 2017.

    27.Tan, S. H.; Inai, R.; Kotaki, M.; Ramakrishna, S., Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005, 46, (16), 6128.

    28.Shin, C.; Chase, G. G., Separation of liquid drops from air by glass fiber filters augmented with polystyrene nanofibers. Journal of Dispersion Science and Technology 2006, 27, (1), 5.

    29.Hong, K. H.; Kang, T. J., Polyaniline-nylon 6 composite nanowires prepared by emulsion polymerization and electrospinning process. Journal of Applied Polymer Science 2006, 99, (3), 1277.

    30.Pawlowski, K. J.; Belvin, H. L.; Raney, D. L.; Su, J.; Harrison, J. S.; Siochi, E. J., Electrospinning of a micro-air vehicle wing skin. Polymer 2003, 44, (4), 1309.

    31.Riboldi, S. A.; Sampaolesi, M.; Neuenschwander, P.; Cossu, G.; Mantero, S., Electrospun degradable polyesterurethane membranes: Potential scaffolds for skeletal muscle tissue engineering. Biomaterials 2005, 26, (22), 4606.

    32.Khil, M.-S.; Cha, D.-I.; Kim, H.-Y.; Kim, I.-S.; Bhattarai, N., Electrospun Nanofibrous Polyurethane Membrane as Wound Dressing. Journal of Biomedical Materials Research - Part B Applied Biomaterials 2003, 67, (2), 675.

    33.Luong-Van, E.; Grondahl, L.; Chua, K. N.; Leong, K. W.; Nurcombe, V.; Cool, S. M., Controlled release of heparin from poly(ε-caprolactone) electrospun fibers. Biomaterials 2006, 27, (9), 2042.

    34.Demir, M. M.; Gulgun, M. A.; Menceloglu, Y. Z.; Erman, B.; Abramchuk, S. S.; Makhaeva, E. E.; Khokhlov, A. R.; Matveeva, V. G.; Sulman, M. G., Palladium Nanoparticles by Electrospinning from Poly(acrylonitrile-co-acrylic acid)-PdCl2 Solutions. Relations between Preparation Conditions, Particle Size, and Catalytic Activity. Macromolecules 2004, 37, (5), 1787.

    35.Lyons, J.; Li, C.; Ko, F., Melt-electrospinning part I: Processing parameters and geometric properties. Polymer 2004, 45, (22), 7597.

    36.Theron, A.; Zussman, E.; Yarin, A. L. In Electrostatic field-assisted alignment of electrospun nanofibres, Bethesda, MR, United States, 2001; Institute of Physics Publishing, Bristol, BS1 6BE, United Kingdom: Bethesda, MR, United States, 2001; p 384.

    37.Katta, P.; Alessandro, M.; Ramsier, R. D.; Chase, G. G., Continuous Electrospinning of Aligned Polymer Nanofibers onto a Wire Drum Collector. Nano Lett. 2004, 4, (11), 2215-2218.

    38.Sun, Z.; Zussman, E.; Yarin, A. L.; Wendorff, J. H.; Greiner, A., Compound Core-Shell Polymer Nanofibers by Co-Electrospinning. Advanced Materials 2003, 15, (22), 1929.

    39.Jiang, H.; Hu, Y.; Li, Y.; Zhao, P.; Zhu, K.; Chen, W., A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. Journal of Controlled Release 2005, 108, (2-3), 237.

    40.Zhang, Y. Z.; Venugopal, J.; Huang, Z. M.; Lim, C. T.; Ramakrishna, S., Characterization of the surface biocompatibility of the electrospun PCL-Collagen nanofibers using fibroblasts. Biomacromolecules 2005, 6, (5), 2583.

    41.Pinto, N. J.; Carrion, P. L.; Ayala, A. M.; Ortiz-Marciales, M., Temperature dependence of the resistance of self-assembled polyaniline nanotubes doped with 2-acrylamido-2-methyl-1-propanesulfonic acid. Synthetic Metals 2005, 148, (3), 271.

    42.Zussman, E.; Yarin, A. L.; Bazilevsky, A. V.; Avrahami, R.; Feldman, M., Electrospun polyacrylonitrile/poly(methyl methacrylate)-derived turbostratic carbon micro-/nanotubes. Advanced Materials 2006, 18, (3), 348.

    43.Abdul-Razzaq, W.; Seehra, M. S., Observation of oxidation and mechanical strain in Cr nanoparticles produced by ball-milling. Physica Status Solidi (A) Applied Research 2002, 193, (1), 94.

    44.Simakin, A. V.; Voronov, V. V.; Kirichenko, N. A.; Shafeev, G. A., Nanoparticles produced by laser ablation of solids in liquid environment. Applied Physics A: Materials Science and Processing 2004, 79, (4-6), 1127.

    45.Young, J. A.; Lynch, K. T.; Walsh, A. J.; Ruth, A. A. In Generation of noble metal nanoparticles by laser ablation in liquids: The role of the molecular environment, Dublin, Ireland, 2005; International Society for Optical Engineering, Bellingham WA, WA 98227-0010, United States: Dublin, Ireland, 2005; p 138.

    46.McLeod, M. C.; Gale, W. F.; Roberts, C. B., Metallic nanoparticle production utilizing a supercritical carbon dioxide flow process. Langmuir 2004, 20, (17), 7078.

    47.Kitchens, C. L.; Roberts, C. B., Copper nanoparticle synthesis in compressed liquid and supercritical fluid reverse micelle systems. Industrial and Engineering Chemistry Research 2004, 43, (19), 6070.

    48.Babonneau, D.; Cabioc'h, T.; Naudon, A.; Girard, J. C.; Denanot, M. F., Silver nanoparticles encapsulated in carbon cages obtained by co-sputtering of the metal and graphite. Surface Science 1998, 409, (2), 358.

    49.Chander, H., Development of nanophosphors - A review. Materials Science and Engineering R: Reports 2005, 49, (5), 113.

    50.Wostek-Wojciechowska, D.; Jeszka, J. K.; Uznanski, P.; Amiens, C.; Chaudret, B.; Lecante, P., Synthesis of gold nanoparticles in solid state by thermal decomposition of an organometallic precursor. Materials Science 2004, 22, (4), 407.

    51.Ozturk, O.; Black, T. J.; Perrine, K.; Pizzolato, K.; Williams, C. T.; Parsons, F. W.; Ratliff, J. S.; Gao, J.; Murphy, C. J.; Xie, H.; Ploehn, H. J.; Chen, D. A., Thermal decomposition of generation-4 polyamidoamine dendrimer films: Decomposition catalyzed by dendrimer-encapsulated Pt particles. Langmuir 2005, 21, (9), 3998.

    52.Nakaso, K.; Han, B.; Ahn, K. H.; Choi, M.; Okuyama, K., Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapor deposition (ES-CVD) method. Journal of Aerosol Science 2003, 34, (7), 869.

    53.Adachi, M.; Kusumi, M.; Tsukui, S., Ion-induced nucleation in nanoparticle synthesis by ionization chemical vapor deposition. Aerosol Science and Technology 2004, 38, (5), 496.

    54.Heel, A.; Kasper, G., Production and characterization of Pd/SiO2 catalyst nanoparticles from a continuous MOCVS/MOCVD aerosol process at atmospheric pressure. Aerosol Science and Technology 2005, 39, (11), 1027.

    55.Cushing, B. L.; Kolesnichenko, V. L.; O'Connor, C. J., Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chemical Reviews 2004, 104, (9), 3893.

    56.Paul, B. K.; Moulik, S. P., Microemulsions: An overview. Journal of Dispersion Science and Technology 1997, 18, (4), 301.

    57.Amigoni-Gerbier, S.; Larpent, C., Synthesis and properties of selective metal-complexing nanoparticles. Macromolecules 1999, 32, (26), 9071.

    58.Manna, A.; Imae, T.; Yogo, T.; Aoi, K.; Okazaki, M., Synthesis of gold nanoparticles in a Winsor II type microemulsion and their characterization. Journal of Colloid and Interface Science 2002, 256, (2), 297.

    59.Pol, V. G.; Srivastava, D. N.; Palchik, O.; Palchik, V.; Slifkin, M. A.; Weiss, A. M.; Gedanken, A., Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 2002, 18, (8), 3352.

    60.Park, J.-E.; Atobe, M.; Fuchigami, T., Sonochemical synthesis of conducting polymer-metal nanoparticles nanocomposite. Electrochimica Acta 2005, 51, (5), 849.

    61.Nemamcha, A.; Rehspringer, J.-L.; Khatmi, D., Synthesis of palladium nanoparticles by sonochemical reduction of palladium(II) nitrate in aqueous solution. Journal of Physical Chemistry B 2006, 110, (1), 383.

    62.Okitsu, K.; Mizukoshi, Y.; Bandow, H.; Yamamoto, T. A.; Nagata, Y.; Maeda, Y., Synthesis of Palladium Nanoparticles with Interstitial Carbon by Sonochemical Reduction of Tetrachloropalladate(II) in Aqueous Solution. J. Phys. Chem. B 1997, 101, (28), 5470-5472.

    63.Condorelli, G. G.; Costanzo, L. L.; Fragala, I. L.; Giuffrida, S.; Ventimiglia, G., A single photochemical route for the formation of both copper nanoparticles and patterned nanostructured films. Journal of Materials Chemistry 2003, 13, (10), 2409.

    64.Pal, A., Photochemical synthesis of gold nanoparticles via controlled nucleation using a bioactive molecule. Materials Letters 2004, 58, (3-4), 529.

    65.Reetz, M. T.; Helbig, W., Size-selective synthesis of nanostructured transition metal clusters. Journal of the American Chemical Society 1994, 116, (16), 7401.

    66.Huang, S.; Minami, K.; Sakaue, H.; Shingubara, S.; Takahagi, T., Optical spectroscopic studies of the dispersibility of gold nanoparticle solutions. Journal of Applied Physics 2002, 92, (12), 7486.

    67.Vollmer, U. K. a. M., Optical Properties of Metal Clusters. 1995, 25.

    68.Doremus, R. H., Glass science. 2nd ed.; Wiley: New York, 1994.

    69.Lu, X.; Li, L.; Zhang, W.; Wang, C., Preparation and characterization of Ag2S nanoparticles embedded in polymer fibre matrices by electrospinning. 2005, 16, (10), 974.

    70.Lu, X.; Zhao, Y.; Wang, C., Fabrication of PbS nanoparticles in polymer-fiber matrices by electrospinning. 2005, 17, (20), 2485.

    71.Lee, H. K.; Jeong, E. H.; Baek, C. K.; Youk, J. H., One-step preparation of ultrafine poly(acrylonitrile) fibers containing silver nanoparticles. 2005, 59, (23), 2977.

    72.Son, W. K.; Youk, J. H.; Lee, T. S.; Park, W. H., Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. 2004, 25, (18), 1632.

    73.Tomczak, N.; vanHulst, N. F.; Vancso, G. J., Beaded Electrospun Fibers for Photonic Applications. Macromolecules 2005, 38, (18), 7863-7866.

    74.Liu, J.; Kumar, S., Microscopic polymer cups by electrospinning. Polymer 2005, 46, (10), 3211.

    75.Sung, J. H.; Kim, H. S.; Jin, H. J.; Choi, H. J.; Chin, I. J., Nanofibrous Membranes Prepared by Multiwalled Carbon Nanotube/Poly(methyl methacrylate) Composites. Macromolecules 2004, 37, (26), 9899-9902.

    76.Sawicka, K.; Gouma, P.; Simon, S., Electrospun biocomposite nanofibers for urea biosensing. Sensors and Actuators B: Chemical 2005, 108, (1-2), 585.

    77.Xiaofeng Lu, Y. Z. C. W. Y. W., Fabrication of CdS Nanorods in PVP Fiber Matrices by Electrospinning. Macromolecular Rapid Communications 2005, 26, (16), 1325-1329.

    78.Jarusuwannapoom, T.; Hongrojjanawiwat, W.; Jitjaicham, S.; Wannatong, L.; Nithitanakul, M.; Pattamaprom, C.; Koombhongse, P.; Rangkupan, R.; Supaphol, P., Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. European Polymer Journal 2005, 41, (3), 409.

    79.Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F., Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules 2004, 37, (2), 573-578.

    80.Lin, T.; Wang, H.; Wang, H.; Wang, X., The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 2004, 15, (9), 1375.

    81.Shin, C.; Chase, G., Separation of Liquid Drops from Air by Glass Fiber Filters Augmented with Polystyrene Nanofibers. Journal of Dispersion Science and Technology 2006, 27, (1), 5.

    82.Lee, K. H.; Kim, H. Y.; Bang, H. J.; Jung, Y. H.; Lee, S. G., The change of bead morphology formed on electrospun polystyrene fibers. Polymer 2003, 44, (14), 4029.

    83.Jia, H.; Zhu, G.; Vugrinovich, B.; Kataphinan, W.; Reneker, D. H.; Wang, P., Enzyme-Carrying Polymeric Nanofibers Prepared via Electrospinning for Use as Unique Biocatalysts. Biotechnol. Prog. 2002, 18, (5), 1027-1032.

    84.Shawon, J.; Sung, C., Electrospinning of polycarbonate nanofibers with solvent mixtures THF and DMF. Journal of Materials Science 2004, 39, (14), 4605.

    85.Viswanathamurthi, P.; Bhattarai, N.; Kim, H. Y.; Cha, D. I.; Lee, D. R., Preparation and morphology of palladium oxide fibers via electrospinning. Materials Letters 2004, 58, (26), 3368.

    86.Gu, S. Y.; Ren, J.; Vancso, G. J., Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. European Polymer Journal 2005, 41, (11), 2559.

    87.Samatham, R.; Choe, K.; Kim, K. J.; Shahinpoor, M.; Nam, J. In Toward nano-biomimetic muscles: polyacrylonitrile nanofibers, Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, 2004; SPIE: San Diego, CA, USA, 2004; p 235.

    88.Drew, C.; Wang, X.; Senecal, K.; Schreuder-Gibson, H.; He, J.; Kumar, J.; Samuelson, L. A., ELECTROSPUN PHOTOVOLTAIC CELLS. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry 2002, 39, (10), 1085.

    89.Hou, H.; Ge, J. J.; Zeng, J.; Li, Q.; Reneker, D. H.; Greiner, A.; Cheng, S. Z. D., Electrospun Polyacrylonitrile Nanofibers Containing a High Concentration of Well-Aligned Multiwall Carbon Nanotubes. Chem. Mater. 2005, 17, (5), 967-973.

    90.Bin Ding, H.-Y. K. S.-C. L. C.-L. S. D.-R. L. S.-J. P. G.-B. K. K.-J. C., Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. Journal of Polymer Science Part B: Polymer Physics 2002, 40, (13), 1261-1268.

    91.Zeng, J.; Aigner, A.; Czubayko, F.; Kissel, T.; Wendorff, J. H.; Greiner, A., Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 2005, 6, (3), 1484.

    92.Dai, H.; Gong, J.; Kim, H.; Lee, D., A novel method for preparing ultra-fine alumina-borate oxide fibres via an electrospinning technique. Nanotechnology 2002, 13, (5), 674.

    93.Yang, G.-C.; Gong, J.; Pan, Y.; Cui, X.-J.; Shao, C.-L.; Guo, Y.-H.; Wen, S.-B.; Qu, L.-Y., Preparation and photochromic properties of ultra-fine H3PW 11MoO40/PVA fibre mats. Journal of Physics D: Applied Physics 2004, 37, (14), 1987.

    94.Li, D.; Frey, M. W.; Baeumner, A. J., Electrospun polylactic acid nanofiber membranes as substrates for biosensor assemblies. Journal of Membrane Science 2006, 279, (1-2), 354.

    95.Pinto, N. J.; Johnson Jr, A. T.; MacDiarmid, A. G.; Mueller, C. H.; Theofylaktos, N.; Robinson, D. C.; Miranda, F. A., Electrospun polyaniline/polyethylene oxide nanofiber field-effect transistor. Applied Physics Letters 2003, 83, (20), 4244.

    96.Ma, Z.; Kotaki, M.; Yong, T.; He, W.; Ramakrishna, S., Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials 2005, 26, (15), 2527.

    97.Liu, H.; Hsieh, Y.-L., Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. Journal of Polymer Science, Part B: Polymer Physics 2002, 40, (18), 2119.

    98.Li, Y.; Huang, Z.; Lu, Y., Electrospinning of nylon-6,66,1010 terpolymer. European Polymer Journal 2006, 42, (7), 1696.

    99.Demir, M. M.; Yilgor, I.; Yilgor, E.; Erman, B., Electrospinning of polyurethane fibers. Polymer 2002, 43, (11), 3303.

    100.Kim, J.-S.; Reneker, D. H., Polybenzimidazole nanofiber produced by electrospinning. Polymer Engineering and Science 1999, 39, (5), 849.

    101.Srinivasan, G.; Reneker, D. H., Structure and morphology of small diameter electrospun aramid fibers. Polymer International 1995, 36, (2), 195.

    102.Lee, K. H.; Kim, H. Y.; La, Y. M.; Lee, D. R.; Sung, N. H., Influence of a mixing solvent with tetrahydrofuran and N,N-dimethylformamide on electrospun poly(vinyl chloride) nonwoven mats. Journal of Polymer Science, Part B: Polymer Physics 2002, 40, (19), 2259.

    103.Kim, G.-M.; Wutzier, A.; Radusch, H.-J.; Michler, G. H.; Simon, P.; Sperling, R. A.; Parak, W. J., One-dimensional arrangement of gold nanoparticles by electrospinning. 2005, 17, (20), 4949.

    104.Yang, Q. B.; Li, D. M.; Hong, Y. L.; Li, Z. Y.; Wang, C.; Qiu, S. L.; Wei, Y. In Preparation and characterization of a PAN nanofibre containing Ag nanoparticles via electrospinning, 2003; 2003; p 973.

    105.Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F., Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules 2002, 35, (22), 8456-8466.

    106.Zong, X.; Kim, K.; Fang, D.; Ran, S.; Hsiao, B. S.; Chu, B., Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002, 43, (16), 4403.

    107.Basak, D.; Karan, S.; Mallik, B., Size selective photoluminescence in poly(methyl methacrylate) thin solid films with dispersed silver nanoparticles synthesized by a novel method. Chemical Physics Letters 2006, 420, (1-3), 115.

    108.Stoeva, S.; Klabunde, K. J.; Sorensen, C. M.; Dragieva, I., Gram-Scale Synthesis of Monodisperse Gold Colloids by the Solvated Metal Atom Dispersion Method and Digestive Ripening and Their Organization into Two- and Three-Dimensional Structures. J. Am. Chem. Soc. 2002, 124, (10), 2305-2311.

    109.Prasad, B. L. V.; Stoeva, S. I.; Sorensen, C. M.; Klabunde, K. J., Digestive-Ripening Agents for Gold Nanoparticles: Alternatives to Thiols. Chem. Mater. 2003, 15, (4), 935-942.

    110.Smetana, A. B.; Klabunde, K. J.; Sorensen, C. M., Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. Journal of Colloid and Interface Science 2005, 284, (2), 521.

    111.Hong, R. Y.; Qian, J. Z.; Cao, J. X., Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technology 2006, 163, (3), 160.

    下載圖示 校內:2008-08-02公開
    校外:2008-08-02公開
    QR CODE