簡易檢索 / 詳目顯示

研究生: 葉耿傑
Yeh, Geng-Jie
論文名稱: 非線性混合效用模型下之重複量測加速衰變測試規劃
Planning Repeated Measures Accelerated Degradation Tests under Non-linear Mixed Effect Models
指導教授: 鄭順林
Jeng, Shuen-Lin
學位類別: 碩士
Master
系所名稱: 管理學院 - 統計學系
Department of Statistics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 56
中文關鍵詞: 重複量測的加速衰變測試非線性混合效用模型擬蒙地卡羅積分
外文關鍵詞: Repeated Measures Accelerated Degradation Test, Non-linear Mixed Effect Model, Quasi Monte Carlo Integration
相關次數: 點閱:128下載:20
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在一般的壽命測試和衰變測試中,若在實驗期間無法看到足夠的產品失效,則無法對於產品壽命提供足夠的資訊,此時便會進而考慮重複量測的加速衰變測試。在非線性的退化模型假設下,本文處理此種測試規劃的最佳化問題,同時,測試單元間變異亦以非線性之隨機項存在於模型中。

    由於模型的非線性型態,概似函數與費雪訊息矩陣,以及退化模型所衍生出的壽命分佈之推算有其難處。因此,本文以蒙地卡羅積分方法計算測試規劃最佳化之準則,即參數估計量的漸進變異數,並以格子點搜索的方式找到最佳的測試規劃。為了減輕計算上的負擔,本文將最佳化問題考慮在一些限制條件下進行處理,同時並使用擬蒙地卡羅法及一些R套件來進行有效率的統計計算。本文亦將所提出之方法應用在一集成電路裝置之實例上。

    Repeated measures accelerated degradation tests (RMADTs) can provide more information about the product reliability
    when one would expect few or even no failures during a study. In this paper, we deal with the optimal test planning problem under the non-linear Arrhenius acceleration model. Further, unit-to-unit variability is described by the random effects, which is also non-linear in time.

    Due to the assumption of non-linear mixed effect model (NLMEM), the analytical calculation of the likelihood and some related functions such as Fisher information matrix are difficult. Therefore, we perform the Monte Carlo integration to calculate the asymptotic variance of estimators as the optimality criterion. Grid search procedures are conducted to find the optimum test plan under some constraints. Quasi-random low-discrepancy sequences and some R packages for efficient computation are used to relief the computational burden. The method is illustrated with an application of an integrated circuit device example.

    1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Planning the RMADTs . . . . . . . . . . . . . . . . . 2 1.2.2 Evaluation of Fisher Information Matrix under NLMEMs 3 1.3 Motivating Example and Previous Work . . . . . . . . . . . . 3 1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Degradation Models and Lifetime Distribution 6 2.1 Accelerated Degradation Model . . . . . . . . . . . . . . . . 6 2.1.1 General Degradation Path Model . . . . . . . . . . . . 6 2.1.2 Arrhenius Acceleration Factor . . . . . . . . . . . . . 6 2.1.3 Re-parameterization . . . . . . . . . . . . . . . . . . 7 2.2 Likelihood, MLE and Fisher Information . . . . . . . . . . . 9 2.3 Lifetime Distribution for Degradation Models . . . . . . . . . 10 2.3.1 Relationship between Degradation and Failures . . . . 10 2.3.2 p Quantile of Lifetime Distribution . . . . . . . . . . 12 3 Planning RMADTs 13 3.1 Planning Information and Constraints . . . . . . . . . . . . . 13 3.2 Specification of RMADT Plans . . . . . . . . . . . . . . . . . 13 3.2.1 Stress Level and Test Units Allocation . . . . . . . . . 13 3.2.2 Inspection Schedule . . . . . . . . . . . . . . . . . . 14 3.3 Criterion for Choosing a Plan . . . . . . . . . . . . . . . . . . 15 3.3.1 Variance Covariance Matrix of Parameters Estimators 15 3.3.2 Asymptotic Variance of Estimator of p Quantile . . . . 16 4 Methodology in Computation 18 4.1 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . 18 4.2 Quasi Monte Carlo Integration . . . . . . . . . . . . . . . . . 18 5 Application 22 5.1 Computational Performance and Efficiency . . . . . . . . . . 22 5.1.1 Evaluation of Likelihood and Information . . . . . . . 24 5.1.2 Evaluation of Lifetime Distribution and Derivatives of F . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.2 Grid Search for Optimal RMADT Plans . . . . . . . . . . . . 33 5.2.1 Re-allocation of Device-B Example . . . . . . . . . . 33 5.2.2 Optimal Choice of Number of Stress Levels . . . . . . 34 5.3 Validation of Optimality with Finite Sample . . . . . . . . . . 39 5.3.1 Variability of Estimators . . . . . . . . . . . . . . . . 39 5.3.2 Convergence of Variance with Increasing Sample Size 39 6 Conclusions and Future Work 42 Bibliography 44 Appendix 47 Appendix A Derivation of Fisher Information 47 Appendix B Derivation of AVar of tp 50 Appendix C Figures and Tables 52

    Comets, E., Lavenu, A., and Lavielle, M. (2011), “SAEMIX, an R version of
    the SAEM algorithm”, 20th meeting of the Population Approach Group in
    Europe, Athens, Greece.
    Das, S., Spall, J. C., and Ghanem, R. (2010), “Efficient monte carlo computation
    of fisher information matrix using prior information”, Computational
    Statistics & Data Analysis, 54(2), 272–289.
    Guan, Q. and Tang, Y. (2013), “Optimal design of accelerated degradation
    test based on gamma process models”, Chinese Journal of Applied Probability
    and Statistics, 29(2).
    Kim, S. J. and Bae, S. J. (2013), “Cost-effective degradation test plan for a
    nonlinear random-coefficients model”, Reliability Engineering and System
    Safety, 110, 68–79.
    Krykova, I. (2003), “Evaluating of path-dependent securities with low discrepancy
    methods”, Master’s thesis, Worcester Polytechnic Institute.
    Kuhn, E. and Lavielle, M. (2005), “Maximum likelihood estimation in nonlinear
    mixed effects models”, Computational Statistics & Data Analysis,
    49, 1020–1038.
    Lim, H. and Yum, B. J. (2011), “Optimal design of accelerated degradation
    tests based on wiener process models”, Journal of Applied Statistics, 38(2),
    309–325.
    Meeker, W. Q. and Escobar, L. A. (1998), Statistical methods for reliability
    data, volume 78, Wiley New York.
    Nguyen, T. T. and Mentré, F. (2014), “Evaluation of the fisher information
    matrix in nonlinear mixed effect models using adaptive gaussian quadrature”,
    Computational Statistics & Data Analysis, 80, 57–69.
    Niederreiter, H. (1992), Random Number Generation and Quasi Monte Carlo
    Methods, SIAM, Philadelphia.
    Pillai, G. C., Mentre, F., and Steimer, J. L. (2005), “Non-linear mixed effects
    modeling - from methodology and software development to driving implementation
    in drug development science”, Journal of Pharmacokinetics and
    Pharmacodynamics, 32(2), 161–83.
    Plan, E. L., Maloney, A., Mentre, F., Karlsson, M. O., and Bertrand, J.
    (2012), “Performance comparison of various maximum likelihood nonlinear
    mixed-effects estimation methods for dose-response models”, The
    AAPS Journal, 14(3), 420–32.
    Robert, C. P. and Casella, G. (1999), Monte Carlo Statistical Method,
    Springer.
    Spall, J. C. (2005), “Monte carlo computation of the fisher information matrix
    in nonstandard settings”, Journal of Computational and Graphical Statistics,
    14(4), 889–909.
    (2008), “Improved methods for monte carlo estimation of the fisher
    information matrix”, in American Control Conference, 2008, 2395–2400.
    Tang, S., Guo, X., Yu, C., Xue, H., and Zhou, Z. (2014), “Accelerated degradation
    tests modeling based on the nonlinear wiener process with random
    effects”, Mathematical Problems in Engineering, 2014, 1–11.
    Tsai, C. C., Tseng, S. T., and Balakrishnan, N. (2012), “Optimal design for
    degradation tests based on gamma processes with random effects”, IEEE
    Transactions on Reliability, 61(2), 604–613.
    Weaver, B. P. and Meeker, W. Q. (2014), “Methods for planning repeated
    measures accelerated degradation tests”, Applied Stochastic Models in
    Business and Industry, 30(6), 658–671.
    Weaver, B. P., Meeker, W. Q., Escobar, L. A., and Wendelberger, Joanne
    (2013), “Methods for planning repeated measures degradation studies”,
    Technometrics, 55(2), 122–134.
    Weisstein, E. W. (1999), “Leibniz integral rule. From MathWorld – A Wolfram
    Web Resource”, URL http://mathworld.wolfram.com/
    LeibnizIntegralRule.html.
    Ye, Z. S., Chen, L. P., Tang, L. C., and Xie, M. (2014), “Accelerated degradation
    test planning using the inverse gaussian process”, IEEE Transactions
    on Reliability, 63(3), 750–763.
    Yuan, X. X. and Pandey, M. D. (2009), “A nonlinear mixed-effects model
    for degradation data obtained from in-service inspections”, Reliability Engineering
    & System Safety, 94(2), 509–519.

    下載圖示 校內:2020-08-17公開
    校外:2020-08-17公開
    QR CODE