簡易檢索 / 詳目顯示

研究生: 陳羿妏
Chen, Yi-Wen
論文名稱: 在菸草中大量表現RecA重組蛋白以促進葉綠體DNA的修復
Overexpression of RecA recombinant protein in tobacco to enhance the repairing of chloroplast DNA
指導教授: 張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 156
中文關鍵詞: 葉綠體RecA蛋白質同源重組
外文關鍵詞: Chloroplast DNA, Homologous recombination, RecA proteins
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 植物葉綠體為光合作用及其他重要生化代謝發生之場所。然而葉綠體DNA 經常暴露於嚴峻的環境下,其中包含活性氧化物(reactive oxygen species)以及紫外線(UV),會使基因組不穩定並造成DNA的損傷,而雙股DNA的斷裂為最嚴重的形式。RecA為涉及葉綠體同源重組修復的重要蛋白質。本研究針對菸草細胞核編碼的4個 RecA 基因,RecA1S、RecA1L、RecA2S 及 RecA2L 進行大量表現,用以研究 RecA 蛋白質在細胞的位置及探討其對葉綠體DNA 修復的影響。分別構築由35S 啓動子調控RecA-mGFP重組基因之表現,利用農桿菌介導法進行菸草的轉殖,經篩選後分別獲得 26株 RecA1S、23株RecA1L 及25株 RecA2S轉殖植株,並利用螢光顯微鏡觀測 GFP 的表現位置,在RecA1L-15、19、23轉殖植株觀測到GFP 的表現,初步確認其表現位置在葉綠體。進一步再以共軛焦顯微鏡觀測RecA1L-15植株,確認RecA-mGFP在葉綠體中表現。此外,利用 RT-PCR在RecA1L-15及19品系中偵測到RecA1L-mGFP之mRNA表現。另外,已將 RecA 大量表現之轉殖植株與造成葉綠體 DNA 受損之轉殖植株進行雜交,正探討大量表現 RecA 蛋白質與葉綠體修復DNA之間的關係。

    Chloroplast, an endosymbiont from cyanobacteria, is the place for photosynthesis and many other biochemical metabolisms to occur. Although the chloroplast DNA (cpDNA) encodes about 110-120 genes, most chloroplast proteins are encoded by the nuclear genome. Hence the chloroplast is in close communication with the nucleus to maintain the normal cellular functions. However, cpDNA is often exposed to severe stress environments, including reactive oxygen species and UV, which may cause the instability of chloroplast genome if the damaged cpDNA could not be repaired properly. Homologous recombination (HR) is an important mechanism for the accurately repairing of damaged cpDNA, and RecA protein play a key role in this repairing process. In this study, we aim to overexpress four RecA genes, RecA1S, RecA1L, RecA2S and RecA2L in tobacco to address the cellular localization of RecA protein and to increase the HR-mediated repairing efficiency in transgenic tobacco. We constructed binary vectors with the recombinant RecA-mGFP fusion genes driven by CaMV 35S promoter. Agrobacteria-mediated method was used to transform leaf tissues of tobacco. After selected with hygromycin, and followed the regeneration, 26 RecA1S-mGFP、23 RecA1L-mGFP and 25 RecA2S-mGFP transgenic T0 plants were obtained, respectively. Transgene integration into nuclear genome in 14 RecA1L-mGFP、9 RecA1S-mGFP transgenic plants was confirmed by PCR analysis. The expression of GFP in chloroplasts could be observed in three transgenic plants (RecA1L-15, -19 and -23) under the fluorescence microscope. In addition, the cellular localization of RecA-mGFP fusion protein in the chloroplasts of transgenic plant (RecA1L-15) was observed by confocal microscope. Furthermore, the expression of RecA1L-mGFP mRNA was confirmed in transgenic plants (RecA1L-15 and -19) by RT-PCR analysis. The transgenic tobacco of overexpressing RecA-mGFP gene was crossed with the transgenic plant of overexpressing TALEN genes to test whether the overexpression of RecA proteins could enhance the HR-mediated process in repairing damaged cpDNA.

    目錄 中文摘要 I 英文摘要 II 誌謝 V 目錄 VII 表目錄 X 圖目錄 XI 附圖目錄 XIII 縮寫表 XIV 一、研究背景 1 1-1基因轉殖植物 1 1-2葉綠體的結構與功能 1 1-3葉綠體基因組 3 1-4葉綠體基因轉殖技術之發展與應用 4 1-5葉綠體的 DNA 修復機制 6 1-6 RecA重組酶之結構與功能 10 1-7 TALEN 技術之發展與應用 10 1-8研究目的 13 二、材料與方法 15 2-1實驗材料 15 2-2植物基因轉殖之載體構築 15 2-3菸草之基因轉殖 24 2-4確認外源基因存在於菸草基因組 31 2-5反轉錄PCR偵測mRNA的表現 33 2-6以PEG介導法將plasmid DNA送至菸草的原生質體中 35 2-7螢光顯微鏡下觀測菸草原生質體 37 2-8共軛焦顯微鏡下觀測菸草原生質體 37 2-9利用化學物質處理菸草以觀察其耐受性 37 三、結果 40 3-1 RecA基因序列的結構分析與親緣演化分析 40 3-2預測RecA蛋白質存在於菸草細胞中的位置 43 3-3獲得轉殖菸草品系 43 3-4 PCR 確認外源基因是否存在於轉殖煙草的基因組 46 3-5反轉錄PCR偵測RecA1L-mGFP重組基因之表現 48 3-6確認RecA-mGFP重組蛋白於菸草中表現的位置 49 3-7 A1L-15植物與A1L-15 x M17雜交植物外表性狀與GFP表現 . 53 3-8比較A1L-15與A1L-15xM17植物的RecA-mGFP長度 55 3-9 RecA1L-15轉殖植株對methyl viologen和ciprofloxacin抗性 56 四、討論 58 4-1分析菸草 RecA 基因結構以及其存在的位置 58 4-2菸草 RecA基因與其他植物種間親緣關係 60 4-3探討pC1302-NtRecA1S及NtRecA2S轉殖品系 61 4-4 RecA1L-15轉殖菸草Methyl viologen與Ciprofloxacin耐受性 62 4-5 NtRecA1L-15轉殖菸草之後續分析方向及應用 64 4-6 探討NtRecA-GFP 之蛋白功能 4-7總結 66 參考文獻 68 圖表 77 附錄 134

    參考文獻
    陳詩璇,利用誘導表現轉錄似活化因子蛋白核酸酶(TALEN)來改變菸草葉綠體 DNA,國立成功大學生物科技研究所碩士論文,2018。

    蘇源霖,轉殖似轉錄激活因子蛋白核酸酶(TALEN)來改變菸草葉綠體 DNA 序列之研究,國立成功大學生物科技研究所碩士論文,2016。

    Adem, M., Beyene, D. and Feyissa, T. Recent achievements obtained by chloroplast transformation. Plant Methods 13, 13-24, 2017.

    Allen, C., Flores-Vergara, A., Krasnyanski, S., Kumar, S. and Thompson, F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols 1, 2320-2325, 2006.

    Anil, D. and Panagiotis, M. DNA replication, recombination, and repair in plastids. Cell and Molecular Biology of Plastids 19, 65-119, 2007.

    Asai, T., Bates, B. and Kogoma, T. DNA replication triggered by double-stranded breaks in E. coli: dependence on homologous recombination functions. Cell 78, 1051-1061, 1994.

    Baly, C. C. Photosynthesis. Science 68, 364-367, 1928.

    Balasubramani, G., Raghavendra, K., Das, J., Kumar, R., Santosh, H., Amudha, J., Kranthi, S. and Kranthi, K. Critical Evaluation of GM Cotton. Cotton Precision Breeding 9, 351-410, 2021.

    Barakate, A., Keir, E., Oakey, H., and Halpin, C. Stimulation of homologous recombination in plants expressing heterologous recombinases. BioMed Central Plant Biology 20, 20-30, 2020.

    Baumann P. and West S. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends in Biochemical Sciences 23, 247-251, 1998.

    Beeramganti, N., Beeramganti, H., Subramanyam, K. and Rajasekhar, P. Chloroplast expression vector system and its transformation. International Journal of Scientific and Technology Research 2, 47-58, 2012.

    Bernstein, C., Prasad, R., Nfonsam, V. and Bernstein, H. DNA damage, DNA repair and cancer. InTech 16, 413-465, 2013.

    Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annual Review of Plant Biology 66, 211-241, 2015.

    Boehm, R. and Bock, R. Recent Advances and Current Challenges in Synthetic Biology of the Plastid Genetic System and Metabolism. Plant Physiology 179, 794-802, 2018.

    Bogorad, L. Engineering chloroplasts: an alternative site for foreign genes, proteins, reactions and products. Trends in Biotechnology 18, 257-263, 2000.

    Buljubašić, M., Hlevnjak A., Repar, J., Đermić, D., Filić, V., Weber, L., Zahradka, K. and Zahradka, D. RecBCD- RecFOR-independent pathway of homologous recombination in Escherichia coli. DNA Repair 83, 102670, 2019.

    Caffarri, S., Tibiletti, T., Jennings, C. and Santabarbara, S. A comparison between plant photosystem I and photosystem II architecture and functioning. Current Protein and Peptide Science 15, 296-331, 2014.

    Carter, D. and Staehelin, A. Proteolysis of chloroplast thylakoid membranes. II. Evidence for the involvement of the light-harvesting chlorophyll ab-protein complex in thylakoid stacking and for effects of magnesium ions on photosystem II-light-harvesting complex aggregates in the absence of membrane stacking. Archives of Biochemistry and Biophysics 200, 374-386, 1980.

    Cavalier-Smith, T. Chloroplast evolution: secondary symbiogenesis and multiple losses. Current Biology 12, 62-64, 2002.

    Cerutti, H., Johnson, M., Boynton, E. and Gillham, W. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Molecular and Cellular Biology 15, 3003-3011, 1995.

    Cox, M. Recombinational DNA repair in bacteria and the RecA protein. Molecular Biology Education 63, 311-366, 1999.

    Daniell, H. Transformation and foreign gene expression in plants by microprojectile bombardment. Methods in Molecular Biology 62, 463-489, 1997.

    Daniell, H., Chebolu, S., Kumar, S., Singleton, M and Falconer, R. Chloroplast-derived vaccine antigens and other therapeutic proteins. Vaccine 23, 1779-1783, 2005.

    Daniell, H., Datta, R., Varma, S., Gray, S. and Lee, S. B. Containment of herbicide resistance through genetic engineering of the chloroplast genome. Nature Biotechnology 16, 345-348, 1998.

    Daniell, H., Khan, M. S. and Allison, L. Milestones in chloroplast geneticengineering: an environmentallyfriendly era in biotechnology. Trends in Plant Science 7, 84-91, 2002.

    Drescher, A., Ruf, S., Calsa, T., Carrer, H. and Bock, R. The two largest chloroplast genome-encoded open reading frames of higher plants are essential genes. Plant Journal 22, 97-104, 2000.

    Emanuelsson, O., Brunak, S., Heijne, G. and Nielsen, H. Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols 2, 953-971, 2007.

    ErikaKovács-Bogdán, E., Soll, J and Bölter, B. Protein import into chloroplasts: The Tic complex and its regulation. Biochimica et Biophysica Acta - Molecular Cell Research 1803, 740-747, 2010.

    Fraley, R. T., Rogers, S. G., Horsch, R. B., Sanders, P. R., Flick, J. S., Adams, S. P., Bittner, M. L., Brand, L. A., Fink, C. L. and Fry, J. S. Expression of bacterial genes in plant cells. Proceedings of the National Academy of Sciences of the United States of America 80, 4803-4807, 1983.

    Gaj, T., Gersbach, A. and Barbas, F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31, 397-405, 2013.

    Gelvin, B. Agrobacterium-Mediated Plant Transformation: the Biology behind the “Gene-Jockeying” Tool. Microbiology and Molecular Biology Reviews 67, 16-37, 2003.

    Gardner, C., Hartle, J., Garrett, R., Offringa, L. and Wasserman, A. Maximizing the intersection of human health and the health of the environment with regard to the amount and type of protein produced and consumed in the United States. Nutrition Reviews 77, 197-215, 2019.

    Gupta, P. K. Cell Organelles. Cell and Molecular Biology, Rastogi Publications , India, 129, 2005.

    Hansmann, P., Falk, H., Ronai, K. and Sitte, P. Structure, composition, and distribution of plastid nucleoids in Narcissus pseudonarcissus. Planta 164, 459-472, 1985.

    Helleday, T., Lo, J., van Gent, C. and Engelward, P. DNA double-strand break repair: from mechanistic understanding to cancer treatment. DNA Repair 6, 923-935, 2007.

    Hiom, K. Coping with DNA double strand breaks. DNA Repair 9, 1256-1263, 2010.

    Ismagul, A., Yang, N., Maltseva, E., Iskakova, G., Mazonka, I., Skiba, Y., Bi, H., Eliby, S., Jatayev, S., Shavrukov, Y., Borisjuk, N. and Langridge, P. A biolistic method for high-throughput production of transgenic wheat plants with single gene insertions. Biomed Central Genomics Plant Biology 18, 4-8, 2018.

    Jeon, H., Jin, Y. M., Choi, M. H., Lee, H., and Kim, M. Chloroplast-targeted bacterial RecA proteins confer tolerance to chloroplast DNA damage by methyl viologen or UV-C radiation in tobacco (Nicotiana tabacum) plants. Physiologia Plantarum 147, 218-233, 2012.

    Kakai, M. New perspectives on chloroplast protein import. Plant and Cell Physiology 59, 1111-1119, 2018.

    Kang, J., Zhang, H., Wang, Y., Liang, S., Mao, Z., Zhang, X., and Xiang, Q. Distinctive evolutionary pattern of organelle genomes linked to the nuclear genome in Selaginellaceae. Plant Journal 104, 1657-1672, 2020.

    Kirchhoff, H. Chloroplast ultrastructure in plants. New Phytologist 223, 565-574, 2019.

    Kwon, T., Huq, E. and Herrin, L. Microhomology-mediated and nonhomologous repairof a double-strand break in the chloroplast genomeof Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 107, 13954-13959, 2010.

    Lestini, R and Michel, B. UvrD controls the access of recombination proteins to blocked replication forks. The European Molecular Biology Organization Journal 26, 3804-3814, 2007.

    Li, B. and Zheng, Y. Dynamic evolution and phylogenomic analysis of the chloroplast genome in Schisandraceae. Scientific Reports 8, 85-92, 2018.

    Li, J., Stoddard, T. J., Demorest, Z. L., Lavoie, P. O., Luo, S., Clasen, B. M., Cedrone, F., Ray, E. E., Coffman, A. P., Daulhac, A., Yabandith, A., Retterath, A. J., Mathis, L., Voytas, D. F., D'Aoust, M. A. and Zhang, F. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production. Plant Biotechnology Journal 14, 533-542, 2016.

    Li, T., Huang, S., Jiang, W.Z., Wright, D., Spalding, M.H., Weeks, D.P. and Yang, B. TAL nucleases (TALNs): hybrid proteins composed ofTAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research 39, 359-372, 2011a.

    Li, T., Liu, B., Spalding, M.H., Weeks, D.P. and Yang, B. High-efficiencyTALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30, 390-392, 2011b.

    Lin, Z., Kong, H., Nei, M., and Ma, H. Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and endosymbiotic gene transfer. Proceedings of the National Academy of Sciences of the United States of America 103, 10328-10333, 2006.

    Liu, J., Li, C., Yu, Z., Huang, P., Wu, H., Wei, C., Zhu, N., Shen, Y., Chen, Y. and Zhang, B. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. Journal of Genetics and Genomics 39, 209-215, 2012.

    Lu, Y., Stegemann, S., Agrawal, S., Karcher, D., Ruf, S. and Bock, R. Horizontal Transfer of a Synthetic Metabolic Pathway between Plant Species. Current Biology 27, 3034-3041, 2017.

    Lucht, J. Public Acceptance of Plant Biotechnology and GM Crops. Viruses 7, 4254-4281, 2015.

    Mahfouz, M., Li, L., Shamimuzzaman, M., Wibowo, A., Fang, X. and Zhu, K. De novo-engineered transcription activator-likeeffector ( TALE ) hybrid nuclease with novel DNAbinding specificity creates double-strand breaks. Proceedings of the National Academy of Sciences of the United States of America 108, 2623-2628, 2011.

    Maréchal, A and Brisson, N. Recombination and the maintenance of plant organelle genome stability. New Phytologist Foundation 186, 299-317, 2010.

    Michel, B., Flores, J., Viguera, E., Grompone, G., Seigneur, M. and Bidnenko, V. Rescue of arrested replication forks by homologous recombination. Proceedings of the National Academy of Sciences of the United States of America 98, 8181-8188, 2001.

    Miller-Messmer, M., Kühn, K., Bichara, M., Ret, M., Imbault, P. and Gualberto, J. RecA-dependent DNA repair results in increased heteroplasmy of the Arabidopsis mitochondrial genome. Plant Physiol 159, 211-226, 2012.

    Occhialini, A., Piatek, A., Pfotenhauer, A. C., Frazier, T. P., Stewart, C. N. and Lenaghan, S. MoChlo: A versatile modular cloning toolbox for chloroplast biotechnology. Plant Physiology 10, 12-20, 2019.

    Odahara, M., Kuroiwa, H., Kuroiwa, T., and Sekine, Y. Suppression of Repeat-Mediated Gross Mitochondrial Genome Rearrangements by RecA in the Moss Physcomitrella patens. The Plant Cell Online 21, 1182-1194, 2009.

    Odahara, M., Inouye, T., Nishimura, Y. and Sekine, Y. RecA plays a dual role in the maintenance of chloroplast genome stability in Physcomitrella patens. Plant Journal 84, 516-526, 2015.

    Odahara, M., Kishita, Y. and Sekine, Y. MSH1 maintains organelle genome stability and genetically interacts with RECA and RECG in the moss Physcomitrella patens. Plant Journal 91, 455-465, 2017.

    Oey, M., Lohse, M., Kreikemeyer, B. and Bock R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant Journal 57, 436-445, 2009.

    Padidam, M. Chemically regulated gene expression in plants. Current Opinion in Plant Biology 6, 169-177, 2003.

    Pasoreck, E. K., Su, J., Silverman, I. M., Gosai, S. J., Gregory, B. D., Yuan, J. S. and Daniell, H. Terpene metabolic engineering via nuclear or chloroplast genomes profoundly and globally impacts off-target pathways through metabolite signalling. Plant Biotechnology Journal 14, 1862-1875, 2006.

    Rani, A., Kumar, A., Lal, A., and Pant, M. Cellular mechanisms of cadmium-induced toxicity: a review. International Journal of Environmental Health Research 24, 378-399, 2013.

    Ravi, V., Khurana, J. P., Tyagi, A. K. and Khurana, P. An update on chloroplast genomes. Plant Systematics and Evolution 271, 101-122, 2007.

    Rocha, P., Cornet, E. and Michel, B. Comparative and evolutionary analysis of the bacterial homologous recombination systems. ‎Public Library of Science 1, 247-259, 2005.

    Rowan, A., Oldenburg, J. and Bendich, J. RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. Journal of Experimental Botany 61, 2575-2588, 2010.

    Shedge, V., Arrieta-Montiel, M., C. Christensen, A. and A. Mackenzie, S. Plant Mitochondrial Recombonation Surveillance Requires Unusual RecA and MutS Homoloug. The Plant Cell 19, 1251-1264, 2007.

    Small, I., Peeters, N., Legeai, F. and Lurin C. Predotar: A tool for rapidly screening proteomes for N-terminal targeting sequences. Proteomics and Systems Biology 6, 1581-1590, 2004.

    Sudhir K., Glen S., Michael L., Christina K., and Koichiro T. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 6, 1547-1549, 2018.

    Stincone, A., Prigione, A., Cramer, T., Wamelink, C., Campbell, K., Cheung, E., Olin-Sandoval, V., Gr¨uning, M., Kr¨uger, A., Alam, T., Keller, A., Breitenbach, M., Brindle, M., Rabinowitz, D. and Ralser, M. The return of metabolism: biochemistry and physiology of the pentose phosphate pathway. Biological Reviews 90, 927-963, 2015.

    Urso, S., Zottini, M., Ruberti, C., Lo Schiavo, F., Stanca, A. M., Cattivelli, L., and Valè, G. An Agrobacterium tumefaciens-mediated gene silencing system for functional analysis in grapevine. Plant Cell, Tissue and Organ Culture 114, 49-60, 2013

    Vaeck, M., Reynaerts, A., Höfte, H., Jansens, S., Beuckeleer, M., Dean, C., Zabeau, M., Montagu, M. and Leemans, J. Transgenic plants protected from insect attack. Nature 327, 239-247 , 1987.

    Val, E., Nasser, W., Abaibou H. and Reverchon, S. RecA and DNA recombination: a review of molecular mechanisms. Biochemical Society Transactions 47, 1511-1531, 2019.

    Villa, A. F., Houze, P., Monier, C., Risède, P., Sarhan, H., Borron, S. W. and Baud, F. J. Toxic doses of paraoxon alter the respiratory pattern without causing respiratory failure in rats. International Journal of Toxicology 232, 37-49, 2007.

    Wall, M. K., Mitchenall, L. A., and Maxwell, A. Arabidopsis thaliana DNA gyrase is targeted to chloroplasts and mitochondria. Proceedings of the National Academy of Sciences of the United States of America 101, 7821-7826, 2004.

    Wurbs, D., Ruf, S. and Bock, R. Contained metabolic engineering in tomatoes by expression of carotenoid biosynthesis genes from the plastid genome. Plant Journal 49, 276-288, 2007.

    Zuo, J., Niu, W., Møller, G. and Chua, H. Chemical-regulated, site-specific DNA excision in transgenic plants. Nature Biotechnology 19, 157-161, 2001.

    無法下載圖示 校內:2026-09-09公開
    校外:2026-09-09公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE