簡易檢索 / 詳目顯示

研究生: 林佳宜
Lin, Chia-Yi
論文名稱: 以有限差分時域法模擬共軛雙層超穎結構在矽波導管上的圓二色性特性研究
FDTD Modeling of Circular Dichroism Property of Conjugated Gammadion Meta-atom Integrated on Silicon Waveguide
指導教授: 張世慧
Chang, Shih-Hui
共同指導教授: 張允崇
Chang, Yun-Chorng
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 69
中文關鍵詞: 有限差分時域法表面電漿共振親手性超穎材料波導管
外文關鍵詞: FDTD, surface plasmon resonance, chiral metamaterials, waveguide
相關次數: 點閱:207下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近20年來,親手性超穎材料(Chiral metamaterials)的圓二色性已經被大量研究。圓二色性(Circular dichroism, CD)量測在生物分子的鑑別上一直扮演著重要角色,而親手性結構在對於分辨左右旋光差異的CD效應上有著優異的光學活性和負折射率。當電磁波通過手性結構表面時,陣列手性結構可以更有效地改變穿透率來提高光學活性。因此,通過適當的結構設計,可以看到強烈的光學活性現象和增強CD訊號,例如雙層共軛卍字型結構。
    我們將金屬的雙層共軛卍字型結構放在矽光波導尾端出光面上形成親手性超表面並觀察圓二色性現象。激發波源將不使用傳統的入射光直接激發結構的方式,而改用可包含低至高階不同模態的光波導波源。模擬上使用有限時域差分法(Finite- difference Time-domain method, FDTD method)做為數值模擬工具。實驗設計主要分為四部份探討1.結構大小效應2.層與層之間的距離效應3.旋轉結構效應4.光波導波源效應。以光波導一階模態作為激發源時,在結構大小改變上共振波長將隨著結構增大而紅移,層與層之間的距離增大時共振波長將藍移。而不同階數的光波導模態對應於不同旋轉角度的結構時顯示出特別的CD結果。一階模態激發時,即使結構旋轉不同角度也可得到相同的CD結果,意即CD值大小不受旋轉角度影響;二階模態激發時,由於模態本身具有對稱性的緣故整體能量會互相抵消,因此我們無法使用這種模態作為激發波源; 三階模態激發時,結構旋轉的角度在不同波長下顯示出了不同大小的CD值,更特別的是在長波長之下還會產生CD值反轉的現象。
    因此,我們藉由探討光波導波源跟親手性結構之間的交互作用給出了一種新的測量觀點,使用光波導管不僅在測量上較便利,還可以直接透過調整不同模態來改變輸出CD結果,更可以藉此達到製作多個含有不同結構的波導元件來達到集成的效果。

    In the past 20 years, the circular dichroism of chiral metamaterials has been extensively studied. The circular dichroism (CD) measurement has always played an important role in the identification of biomolecules. For a well-designed chiral metamaterial structure, it has excellent optical activity and a negative refractive index that can be distinguished the CD difference when it excited by the left-hand or right-hand circular polarized light. When electromagnetic waves pass through the surface of the chiral structure, the transmittance can be changed by the chiral structure array then the optical activity is improved. Therefore, through proper structural design, we can respect more strongly optical activity and CD signal enhancement, for example, double-layer conjugated gammadion structure is a good candidate could be considered.
    In our research, we chose the conjugated gammadion structure that has been widely discussed. The gold double-layer conjugated gammadion structure is placed on the end surface of a silicon optical waveguide to observe the CD signal. The optical waveguide source that contains first, second, and third order waveguide modes instead of the traditional optical source. For the numerical simulation, the Finite-difference Time-domain (FDTD) method is used for all calculations and simulations. For the experimental design could be divided into four parts in discussion: 1. Size effect 2. Layer-to-layer gap effect 3. Structure rotating effect 4. Optical waveguide source effect. When the gammadion structure is excited by first order waveguide mode, the resonance peak red-shifted with the structure size increased. Also, the resonance wavelength is blue-shifted if the gap between the layer-to-layer is increased. To change the rotation angles also revealing totally different CD results. For using the first order waveguide mode, the same CD result can be obtained even if the structure is rotated at different angles, which means that the CD value is not affected by the rotation angle excited by first order waveguide mode; For using the second order waveguide mode, the overall energy will interact with each other due to the symmetric property, so we are not considered to use it to be an excitation source; For using the 3rd order waveguide mode, rotating the structure is affects the CD results strongly. It shows different values correspond to the wavelengths, the CD values even reversed between the shorter and longer wavelength.
    In this research, we provide a new concept for experiment design and CD measurement. An optical waveguide with the end face chiral structure is not only convenient in measurement but also has an ability to change the output CD results by adjusting different waveguide modes. Furthermore, each waveguide device can be collected to achieve integrated measurement.

    Contents 摘要 I Abstract II 誌謝 IV Contents V List of figures VII List of Symbols XI Chapter 1 Introduction 1-1 Localized Surface Plasmonic Resonation 1 1-2 Optical Activity 2 1-3 Circular Dichroism 4 1-4 Reference 5 Chapter 2 Numerical Analysis by Finite Difference Time Domain Method 2-1 Finite-difference method 6 2-2 Finite-Difference Time-Domain (FDTD) method 6 2-3 Maxwell’s equation 8 2-4 Convolutional Perfect Matched Layer (CPML) 10 2-5 Reference 18 Chapter 3 Circular Dichroism Property of Conjugated Gammadion Meta-atom Integrated on Silicon Waveguide 3-1 Introduction 19 3-2 Computational Method and Design 21 3-3 Results and Discussion 3-3-1 Single Layer and Conjugate Effect of Gammadion 24 3-3-2 Size and Gap Effect of Gammadion 26 3-3-3 Waveguide Mode Source and Gammadion Rotation Effect 28 3-4 Conclusions 36 3-5 Reference 37 Chapter 4 Optical Property of Elliptical Gallium Nitride LED Rod Array 4-1 Introduction 40 4-2 Computational Method and Design 41 4-3 Results and Discussion 4-3-1 Change the Minor Axis (Db) Length of Rod 43 4-3-2 Change Height of Rod of Rod (HT, HB) 50 4-3-3 Energy Field Distribution 52 4-3-4 Gap Between Nanorod filled with SiO2 53 4-4 Conclusions 56 4-5 Reference 57 Chapter 5 Molecular Chirality Detection with Periodic Arrays of Three-Dimensional Twisted Metamaterials 5-1 Introduction 59 5-2 Computational Method 5-2-1 Theoretical Simulation 61 5-2-2 Experimental Design 63 5-3 Results and Discussion 5-3-1 Single Twisted-arc Structure 64 5-3-2 Periodic Twisted-arc Structure 66 5-4 Summary 67 5-5 Reference 68

    Chapter1
    [1] H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings” (Springer, New York, 1998)
    [2] AJ Haes, CL Haynes, AD McFarland, Zou S, G. C. Schatz and R. P. Van Duyne, “Plasmonic materials for surface-enhanced sensing and spectroscopy”, MRS Bull., 30:368–75, 2005.
    [3] K. L. Kelly, E. Coronado, L. Zhao and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment”, J. Phys. Chem. B, 107:668–77, 2003.
    [4] K. A. Willets and R. P. Van Duyne, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annu. Rev. Phys. Chem., 58:267–97, 2007.
    [5] J. M. Brockman, B. P. Nelson and R. M. Corn, “Surface plasmon resonance imaging measurements of ultrathin organic films”, Annu. Rev. Phys. Chem., 51:41–63, 2000.
    [6] R. P. Van Duyne, “Molecular plasmonics” Science, 306:985–86, 2004.
    [7] H. Knobloch, H. Brunner, A. Leitner, F. Aussenegg and W. Knoll, “Probing the evanescent field of propagating plasmon surface polaritons by fluorescence and Raman spectroscopies”, J. Chem. Phys., 98:10093–95, 1993.
    [8] Z. Li, M. Mutlu and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission”, J. Opt., 15, 023001, 2013.
    [9] J. A. Kong, “Electromagnetic Wave Theory” (Cambridge, MA: EMW Publishing, 2008)
    [10] Y. Zhao, Amir N. Askarpour, L. Sun, J. Shi, X. Li and Andrea Alu`, “Chirality detection of enantiomers using twisted optical metamaterials”, Nat. Commun., 14180, 2017.

    Chapter2
    [1] Kane S. Yee, "Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media", IEEE Transactions on Antennas and Propagation, 14 (3): 302–307, 1966.
    [2] A. Taflove, and S. C. Hagness, Computational Electrodynamics, 3rd ed., Artech House, 2005.

    Chapter3
    [1] E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B, vol. 79, pp. 035407, 2009.
    [2] K. Matra and N. Wongkasem, “High negative refractive index in chiral metamaterials,” J. Opt., vol. 14, pp. 075101, 2012.
    [3] H. Liu, J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, “Lagrange model for the chiral optical properties of stereometamaterials,” Phys. Rev. B, vol. 81, pp. 241403 (R), 2010
    [4] M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, “Single-slit split-ring resonators at optical frequencies: limits of size scaling,” Opt. Lett., vol. 31, no. 9, pp.1259-1261, May 2006.
    [5] T. T. Kim, S. S. Oh, H. S. Park, R. Zhao, S. H. Kim, W. Choi, B. Min, and O. Hess, “Optical activity enhanced by strong inter-molecular coupling in planar chiral metamaterials,” Sci. Rep., vol. 4, pp. 5864-5869, 2014.
    [6] R. Zhao et al., “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B, vol. 83, pp. 035105, 2011.
    [7] B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A, vol. 76, pp. 023811, 2007
    [8] J. Zhou, D. R. Chowdhury, Ro. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B, vol. 86, pp. 035448, 2012.
    [9] K. Konishi, M. Nomura, N. Kumagai, S. Iwamoto, Y. Arakawa, and M. Kuwata-Gonokami, “Circularly polarized light emission from semiconductor planar chiral nanostructures,” Phys. Rev. Lett., vol. 106, pp. 057402, Feb. 2011.
    [10] D. Zarifi, M. Soleimani, and V. Nayyeri, Student Member, IEEE, “Dual- and multiband chiral metamaterial structures with strong optical activity and negative refraction index,” IEEE Ant. Wire. Prop. Lett., vol. 11, pp. 334-337, Mar. 19, 2012.
    [11] J. J. Cadusch, T. D. James, A. Djalalian-Assl, T. J. Davis, and A. Roberts, “A chiral plasmonic metasurface circular polarization filter,” IEEE Photon. Technol. Lett., vol. 26, no. 23, Dec. 1, 2014
    [12] B. Tang, Z. Li, E. Palacios, Z. Liu, S. Butun, and K. Aydin, “Chiral-selective plasmonic metasurface absorbers operating at visible frequencies,” IEEE Photon. Technol. Lett., vol. 29, no. 3, pp. 295-298, Feb. 1, 2017
    [13] D. Lin and J. S. Huang, “Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement,” Opt Express, vol. 22, no. 7, pp. 7434-45, Apr 07 2014.
    [14] A. Taflove, S. C. Hagness, Computational Electrodynamics, 3rd ed., Artech House, 2005.
    [15] S. Xiao, R. Vahldieck, and H. Jin, “Full-wave analysis of guided wave structures using a novel 2-D FDTD,” IEEE Microw. Guided Wave Lett., vol. 2, no. 5, pp. 165–167, May 1992.
    [16] Landobasa Y. M. Tobing, Liliana Tjahjana, Dao Hua Zhang, Qing Zhang and Qihua Xiong, “Deep subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep., 3 : 2437, 2013.
    [17] Itai Lieberman, Gabriel Shemer, Tcipi Fried, Edward M. Kosower, and Gil Markovich, “Plasmon-Resonance-Enhanced Absorption and Circular Dichroism”, Angew. Chem. Int. Ed., 47, 4855 –4857, 2008.
    [18] Christoph Menzel, Carsten Rockstuhl and Falk Lederer, “An advanced Jones calculus for the classi_cation of periodic metamaterials”, Phys. Rev. A, 82, 053811, 15 November 2010
    [19] Martin Scha¨ferling, Daniel Dregely, Mario Hentschel, and Harald Giessen, “Tailoring Enhanced Optical Chirality Design Principles for Chiral Plasmonic Nanostructures”, Phys. Rev. X, 2, 031010, 2012.

    Chapter4
    [1] S. Nakamura, T. Mukai, and M. Senoh, “Candela-Class High-Brightness Ingan/Algan Double-Heterostructure Blue-Light-Emitting Diodes”, Appl. Phys. Lett., 64, 1687−1689, 1994.
    [2] S. Nakamura, M. Senoh, S. Nagahama; N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “Ingan-Based Multi-Quantum-Well-Structure Laser Diodes”, Jpn. J. Appl. Phys., 2, 35, L74−L76, 1996.
    [3] S. Nakamura, and M. R. Krames, “History of Gallium-Nitride-Based Light-Emitting Diodes for Illumination”, Proc. IEEE, 101, 2211−2220, 2013.
    [4] J. Cho, J. H. Park, J. K. Kim, E. F. Schubert, “White Light-Emitting Diodes: History, Progress, and Future”, Laser Photonics Rev., 11, 1600147, 2017.
    [5] S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, “Prospects for Led Lighting”, Nat. Photonics, 3, 179−181, 2009.
    [6] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, and J. Cho, “Polarization of Light Emission by 460 nm Gainn/Gan Light-Emitting Diodes Grown on (0001) Oriented Sapphire Substrates”, Appl. Phys. Lett., 91, 051117, 2007.
    [7] Paskov, P. P.; Paskova, T.; Holtz, P. O.; Monemar, B. “Anisotropy of the Free Exciton Emission in Gan Grown on a-Plane Sapphire”, Phys. Status Solidi. A. Appl. Research, 190, 75−79, 2002.
    [8] N. F. Gardner, J. C, Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, “Polarization Anisotropy in the Electroluminescence of M-Plane Ingan-Gan Multiple-Quantum-Well Light-Emitting Diodes”, Appl. Phys. Lett., 86, 111101, 2005.
    [9] S. E. Brinkley, Y. D. Lin, A. Chakraborty, N. Pfaff, D. Cohen, J. S. Speck, S. Nakamura, and S. P. DenBaars, “Polarized Spontaneous Emission from Blue-Green M-Plane Gan-Based Light Emitting Diodes”, Appl. Phys. Lett., 98, 011110, 2011.
    [10] Z. Zhuang, Y. Li, B. Liu, X. Guo, J. P. Dai, G. G. Zhang, T. Tao, T. Zhi, Z. L. Xie, H. X. Ge, Y. Shi, Y. D. Zheng, and R. Zhang, “Optical Polarization Characteristics of C-Plane Ingan/Gan Asymmetric Nanostructures”, J. Appl. Phys., 118, 233111, 2015.
    [11] Z. Zhuang, X. Guo, B. Liu, F. R. Hu, J. P. Dai, Y. Zhang, Y. Li, T. Tao, T. Zhi, Z. L. Xie, H. X. Ge, X. Y. Wang, M. Xiao, T. Wang, Y. Shi, Y. D. Zheng, R. Zhang, “Great Enhancement in the Excitonic Recombination and Light Extraction of Highly Ordered Ingan/Gan Elliptic Nanorod Arrays on a Wafer Scale”, Nanotechnology, 27, 015301, 2016.
    [12] H. Y. Chen, Y. C. Yang, H. W. Lin, S. C. Chang, and S. Gwo, “Polarized Photoluminescence from Single Gan Nanorods: Effects of Optical Confinement”, Opt. Express, 16, 13465−13475, 2008.
    [13] Y. J. Lu, H. W. Lin, H. Y. Chen, Y. C. Yang, and S. Gwo, “Single InGaN Nanodisk Light Emitting Diodes as Full-Color Subwavelength Light Sources”, Appl. Phys. Lett., 98, 233101, 2011.
    [14] J. Cho, D. S. Meyaard, M. Ma, and E. F. Schubert, “GaInn-Based Light Emitting Diodes Embedded with Wire Grid Polarizers”, Jpn. J. Appl. Phys., 54.02BB02, 2015.
    [15] A. Taflove, S. C. Hagness, Computational Electrodynamics, 3rd ed., Artech House, 2005.

    Chapter5
    [1] M. E. Franks, G. R. Macpherson, W. D. Figg, “Thalidomide. Lancet 363, 1802−1811, 2004.
    [2] S. M. Kelly, T. J. Jess, N. C. Price, “How to Study Proteins by Circular Dichroism”, Biochim. Biophys. Acta, Proteins Proteomics 1751, 119−139, 2005.
    [3] E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive Detection and Characterization of Biomolecules Using Superchiral Fields”, Nat. Nanotechnol. 5, 783−787, 2010.
    [4] R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, M. Kadodwala, “Superchiral” Spectroscopy: Detection of Protein Higher Order Hierarchical Structure with Chiral Plasmonic Nanostructures. J. Am. Chem. Soc. 137, 8380−8383, 2015.
    [5] C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, M. Kadodwala, “Biomacromolecular Stereostructure Mediates Mode Hybridization in Chiral Plasmonic Nanostructures”, Nano Lett. 16, 5806−5814, 2016.
    [6] H. Fredriksson, Y. Alaverdyan, A. Dmitriev, C. Langhammer, D. S. Sutherland, M. Zaech, B. Kasemo, “Hole-Mask Colloidal Lithography”, Adv. Mater. 19, 4297−4302, 2007.
    [7] B. Frank, X. H. Yin, M. Schaferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-Area 3d Chiral Plasmonic Structures”, ACS Nano 7, 6321−6329, 2013.
    [8] Y. Cui, L. Kang, S. Lan, S. Rodrigues, W. Cai, “Giant Chiral Optical Response from a Twisted-Arc Metamaterial”, Nano Lett. 14, 1021−1025, 2014.
    [9] A. Taflove, S. C. Hagness, Computational Electrodynamics, 3rd ed., Artech House, 2005.
    [10] Y. Zhao, Amir N. Askarpour, L. Sun, J. Shi, X. Li and Andrea Alu`, “Chirality detection of enantiomers using twisted optical metamaterials”, Nat. Commun., 14180, 2017.
    [11] Y. C. Chang, S. M. Wang, H. C. Chung, C. B. Tseng, S. H. Chang, “Observation of Absorption-Dominated Bonding Dark Plasmon Mode from Metal-Insulator-Metal Nanodisk Arrays Fabricated by Nanospherical-Lens Lithography”, ACS Nano 6, 3390−3396, 2012.
    [12] Y. C. Chang, S. C. Lu, H. C. Chung, S. M. Wang, T. D. Tsai, T. F. Guo, “High-Throughput Nanofabrication of Infra-Red and Chiral Metamaterials Using Nanospherical-Lens Lithography”, Sci. Rep. 3, No. 3339, 2013.
    [13] C. Y. Lin, C. C. Liu, Y. Y. Chen, K. Y. Chiu, J. D. Wu, B. L. Lin, C. H. Wang, Y. F. Chen, S. H. Chang, and Y. C. Chang, “Molecular Chirality Detection with Periodic Arrays of Three-Dimensional Twisted Metamaterials”, ACS Appl. Mater. Interfaces 13, 1, 1152–1157, 2021.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE