簡易檢索 / 詳目顯示

研究生: 陳韋傑
Chen, Wei-Jie
論文名稱: 金屬薄膜附著於雙錐形光纖之感測設計
The Design of Metallic Film-Coated Dual-Tapered Fiber Sensors
指導教授: 崔祥辰
Chui, Hsiang-Chen
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 67
中文關鍵詞: 馬氏干涉儀表面電漿共振雙錐形光纖干涉
外文關鍵詞: Mach-Zehnder interferometer, surface-plasmon resonance, dual-tapered fiber, interference
相關次數: 點閱:124下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們設計雙錐形結構於單模光纖(Single-mode),並探討其雙錐形光纖潛在應用,例如感測器。利用單模光纖製作雙錐形設計,將光纖移除光纖外衣(Jacket)及緩衝區(Buffer),使其光纖裸露出包層(Cladding)及核心(Core),使用火炬加熱及電控平移台進行光纖拉伸成為錐形光纖。雙錐形光纖區域之參數可由光學顯微鏡觀察得知,錐形光纖長度及錐形光纖腰部直徑分別為10 毫米及30微米到80微米,重複上述兩次拉伸步驟可得雙錐形光纖感測器。奈米金屬薄膜附著於雙錐形光纖區域部分,我們採用物理氣相沉積,將金、銀碇片放置真空腔體並加熱至高溫蒸鍍,使金屬薄膜覆蓋於雙錐形光纖表面,其薄膜厚度約為80奈米,經由兩次的物理氣相沉積處理使光纖表面覆蓋一層金屬薄膜。
    光學系統上,我們使用白光雷射當光源,白光光源波段落於可見光及近紅外光,波長範圍為450奈米到2400奈米,主要優點為快速辨識錐形光纖於某個波長下之響應及特徵。我們也藉由單頻可調雷射當其光源,可調之中心波長範圍為840奈米到868奈米,其外腔雷射之可調波長精細度為0.1奈米,精確檢測其光源經雙錐形光纖之細節變化。

    根據理論預測,我們預期光源經過雙錐形光纖時,能增加特定波長之干涉現象,並由奈米金屬薄膜覆蓋於雙錐形區域,利用表面電漿共振特性影響特定波長之強度使干涉現象明顯。在未鍍金屬部分其明顯干涉現象在於可見光區域,其波長範圍為550奈米到750奈米;鍍金屬後之干涉現象落於750奈米到920奈米。最後,我們成功利用雙錐形光纖在折射率液體上進行感測,其感測趨勢為線性變化。

    We reported the design of dual-tapered shape in single-mode fiber and explore the potential applications on sesnors, and band-pass filters. After fiber is removed the jacket and buffer, the core and cladding of fiber is heated and extruded. The fiber shape is changed to a taper tye. The related parameters are obtained such as length and waist diameter of dual-tapered fiber is about 10 mm and 30 μm to 80 μm, respectively. The surface of tapered region is coated with metallic film by physical vapor deposition (PVD). The thickness of metallic film is about 80 nm. We can get our dual-tapered fibers with the different metallic films from above process.

    About the optical system, we use a white light laser as a light source that the wavelength range is from visible to near-infrared bewteen 450 nm to 2400 nm. The advantage is rapid identification that the phenomenon is generated for specific wavelengths. We also employ the single-frequency tunable laser as another light source that central wavelength can be tuned between 840 nm to 868 nm. The wavelength resolution of infrared laser is below 0.1 nm.

    According to theoretical predictions, we expect the interference is generated when the light passes through the dual-tapered fiber. The result of interference is obviously in visible light without metallic film. After the surface with metallic film, the interference is obviously in near-infrared. The SPR affects the intensity for specific wavelengths on tapered region. Finally, we are successful to identify the different refractive index by our design.

    摘要 I Abstract II 致謝 III List of Contents V List of Figures VII Chapter 1 Introduction 1 1-1 Background 1 1-2 Motivation 3 1-3 Overview of This Thesis 5 Chapter 2 Theoretical Background 6 2-1 Fiber 6 2-1.1. Principle of Fiber 6 2-1.2. Single-Mode Fiber 9 2-1.2.1. Weakly Guiding Condition 9 2-1.2.2. Mode Field Diameter 10 2-1.3. Mechanisms of Attenuation of Fiber 10 2-2 Evanescent Wave 12 2-2.1. Principle of Evanescent Wave 13 2-2.2. Skin Depth of Evanescent Wave 14 2-2.3. Applications of Evanescent Wave 16 2-3 Surface-Plasmon Resonance (SPR) 16 2-4 The Model of Tapered Fiber 18 2-4.1. Mach-Zehnder Interferometer (MZI) 18 2-4.2. Mach-Zehnder Interference on Tapered Fiber 20 2-4.2.1. Non-Adiabatic Fiber 20 2-4.2.2. Principle of MZI on Tapered Fiber 23 2-5 Absorption Spectrum and Excitation Spectrum 25 Chapter 3 Experimental Setups 27 3-1 Optical System 27 3-1.1. Light Source 28 3-1.2. Measurement Zone 31 3-1.3. Collection Zone 32 3-2 Preparation of Dual-Tapered Fiber 32 3-2.1. The Process of Dual-Tapered Fiber 33 3-2.2. Tapered Zone with Metallic Nanoparticles and Films 35 3-2.2.1. Method of Chemical Bonding 36 3-2.2.2. Method of Physical Vapor Deposition 38 Chapter 4 Experimental Results and Discussions 40 4-1 Experimental Methods 40 4-2 Data Analysis 40 4-2.1. The Dual-Tapered Fiber without Metallic Film 40 4-2.2. The Dual-Tapered Fiber with Metallic Film 47 4-2.3. Two Tapered Regions with Silver Film 51 4-3 Discussions on Surface with and without Metallic Film 52 4-3.1. Surface-Plasmon Resonance (SPR) 52 4-3.2. Interference 54 4-4 The Dual-Tapered Fiber on Sensing Field 56 4-4.1. Experimental Setup and Conditions 56 4-4.2. Experimental Results 57 Chapter 5 Conclusion 62 5-1 Summary 62 5-1.1. Optical System and Preparation of Dual-Tapered Fiber 62 5-1.2. Interference of Surface with and without Metallic Films 62 5-1.3. The Dual-Tapered Fiber on Sensing Field 62 5-2 Future Improvements 63 Reference 64

    1. B. L. Han, S. Q. Lou, W. L. Lu, W. Su, H. Zou, and X. Wang, "Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber," Acta Phys Sin-Ch Ed 62(2013).
    2. D. Malka and Z. Zalevsky, "Multicore Photonic Crystal Fiber Based 1 x 8 Two-Dimensional Intensity Splitters/Couplers," Electromagnetics 33, 413-420 (2013).
    3. M. Klimczak, B. Siwicki, P. Skibinski, D. Pysz, R. Stepien, A. Szolno, J. Pniewski, C. Radzewicz, and R. Buczynski, "Mid-infrared supercontinuum generation in soft-glass suspended core photonic crystal fiber," Opt Quant Electron 46, 563-571 (2014).
    4. Y. N. Zhang, "Design and optimization of low-loss low-nonlinear high negative-dispersion photonic crystal fiber," Acta Phys Sin-Ch Ed 61(2012).
    5. Z. Z. Feng, Y. H. Hsieh, and N. K. Chen, "Successive Asymmetric Abrupt Tapers for Tunable Narrowband Fiber Comb Filters," Ieee Photonic Tech L 23, 438-440 (2011).
    6. M. F. Ferreira, M. V. Facao, S. V. Latas, and M. H. Sousa, "Optical solitons in fibers for communication systems," Fiber Integrated Opt 24, 287-313 (2005).
    7. R. J. Essiambre and G. P. Agrawal, "Timing jitter of ultrashort solitons in high-speed communication systems .1. General formulation and application to dispersion-decreasing fibers," J Opt Soc Am B 14, 314-322 (1997).
    8. S. Lacroix, F. Gonthier, and J. Bures, "All-Fiber Wavelength Filter from Successive Biconical Tapers," Opt Lett 11, 671-673 (1986).
    9. J. Zhang, P. Shum, X. P. Cheng, N. Q. Ngo, and S. Y. Li, "Analysis of linearly tapered fiber Bragg grating for dispersion slope compensation," Ieee Photonic Tech L 15, 1389-1391 (2003).
    10. J. Villatoro, D. Monzon-Hernandez, and D. Luna-Moreno, "In-line optical fiber sensors based on cladded multimode tapered fibers," Appl Optics 43, 5933-5938 (2004).
    11. Y. C. Tsao, W. H. Tsai, W. C. Shih, and M. S. Wu, "An In-situ Real-Time Optical Fiber Sensor Based on Surface Plasmon Resonance for Monitoring the Growth of TiO2 Thin Films," Sensors-Basel 13, 9513-9521 (2013).
    12. L. Xu, L. Jiang, S. M. Wang, B. Y. Li, and Y. F. Lu, "High-temperature sensor based on an abrupt-taper Michelson interferometer in single-mode fiber," Appl Optics 52, 2038-2041 (2013).
    13. K. Q. Kieu and M. Mansuripur, "Biconical fiber taper sensors," Ieee Photonic Tech L 18, 2239-2241 (2006).
    14. G. Cohoon, C. Boyter, M. Errico, K. Vandervoort, and E. Salik, "Enhancing sensitivity of biconical tapered fiber sensors with multiple passes through the taper," Opt Eng 49(2010).
    15. A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeLaRosa, "Fiber Sagnac interferometer temperature sensor," Appl Phys Lett 70, 19-21 (1997).
    16. A. Katzir, Lasers and optical fibers in medicine, Physical techniques in biology and medicine (Academic Press, San Diego, 1993), pp. xix, 317 p.
    17. T. Yagi, N. Kuboki, Y. Suzuki, N. Uchino, K. Nakamura, and K. Yoshida, "Fiber-optic ammonia sensors utilizing rectangular-cladding eccentric-core fiber," Opt Rev 4, 596-600 (1997).
    18. P. Blazkiewicz, W. Xu, D. Wong, S. Fleming, and T. Ryan, "Modification of thermal poling evolution using novel twin-hole fibers," J Lightwave Technol 19, 1149-1154 (2001).
    19. G. Wu, Y. L. Zhang, and Z. Y. Wang, "Propagation characteristics of twin-hole poling optical fibers," Opt Eng 46(2007).
    20. P. Blazkiewicz, W. Xu, D. Wong, and S. Fleming, "Mechanism for thermal poling in twin-hole silicate fibers," J Opt Soc Am B 19, 870-874 (2002).
    21. T. D. Papathanasiou, "On the effective permeability of square arrays of permeable fiber tows," Int J Multiphas Flow 23, 81-92 (1997).
    22. J. W. Park, H. J. Yeom, and J. H. Yoo, "Axial Loading Tests and FEM Analysis of Slender Square Hollow Section (SHS) Stub Columns Strengthened with Carbon Fiber Reinforced Polymers," Int J Steel Struct 13, 731-743 (2013).
    23. L. Rosa, F. Poli, M. Foroni, A. Cucinotta, and S. Selleri, "Polarization splitter based on a square-lattice photonic-crystal fiber," Opt Lett 31, 441-443 (2006).
    24. M. Y. Chen, B. Sun, Y. K. Zhang, and X. X. Fu, "Design of broadband polarization splitter based on partial coupling in square-lattice photonic-crystal fiber," Appl Optics 49, 3042-3048 (2010).
    25. G. Wu, L. Zhou, and Z. Y. Wang, "Thermally poled twin-hole fibers with tungsten electrodes," Microw Opt Techn Let 49, 2010-2012 (2007).
    26. L. Ding, C. Belacel, S. Ducci, G. Leo, and I. Favero, "Ultralow loss single-mode silica tapers manufactured by a microheater," Appl Optics 49, 2441-2445 (2010).
    27. S. W. Harun, K. S. Lim, C. K. Tio, K. Dimyati, and H. Ahmad, "Theoretical analysis and fabrication of tapered fiber," Optik 124, 538-543 (2013).
    28. T. A. Birks and Y. W. Li, "The Shape of Fiber Tapers," J Lightwave Technol 10, 432-438 (1992).
    29. M. Sheeba, M. Rajesh, C. P. G. Vallabhan, V. P. N. Nampoori, and P. Radhakrishnan, "Fibre optic sensor for the detection of adulterant traces in coconut oil," Meas Sci Technol 16, 2247-2250 (2005).
    30. J. Villatoro, V. P. Minkovich, and D. Monzon-Hernandez, "Temperature-independent strain sensor made from tapered holey optical fiber," Opt Lett 31, 305-307 (2006).
    31. P. Datta, I. Matias, C. Aramburu, A. Bakas, M. Lopez-Amo, and J. M. Oton, "Tapered optical-fiber temperature sensor," Microw Opt Techn Let 11, 93-95 (1996).
    32. E. DelaRosa, L. A. Zenteno, A. N. Starodumov, and D. Monzon, "All-fiber absolute temperature sensor using an unbalanced high-birefringence Sagnac loop," Opt Lett 22, 481-483 (1997).
    33. H. Tazawa, T. Kanie, and M. Katayama, "Fiber-optic coupler based refractive index sensor and its application to biosensing," Appl Phys Lett 91(2007).
    34. X. D. Fan, I. M. White, S. I. Shopova, H. Y. Zhu, J. D. Suter, and Y. Z. Sun, "Sensitive optical biosensors for unlabeled targets: A review," Anal Chim Acta 620, 8-26 (2008).
    35. C. R. Biazoli, S. Silva, M. A. R. Franco, O. Frazao, and C. M. B. Cordeiro, "Multimode interference tapered fiber refractive index sensors," Appl Optics 51, 5941-5945 (2012).
    36. L. Rodriguez-Cobo, J. Mirapeix, R. Ruiz-Lombera, A. Cobo, and J. M. Lopez-Higuera, "Fiber Bragg grating sensors for on-line welding diagnostics," J Mater Process Tech 214, 839-843 (2014).
    37. C. D. Singh, Y. Shibata, and M. Ogita, "A theoretical study of tapered, porous clad optical fibers for detection of gases," Sensor Actuat B-Chem 92, 44-48 (2003).
    38. C. Bariain, I. R. Matias, I. Romeo, J. Garrido, and M. Laguna, "Detection of volatile organic compound vapors by using a vapochromic material on a tapered optical fiber," Appl Phys Lett 77, 2274-2276 (2000).
    39. Y. H. Tai and P. K. Wei, "Sensitive liquid refractive index sensors using tapered optical fiber tips," Opt Lett 35, 944-946 (2010).
    40. A. Jonas, Y. Karadag, M. Mestre, and A. Kiraz, "Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides," J Opt Soc Am B 29, 3240-3247 (2012).
    41. M. I. Zibaii, A. Kazemi, H. Latifi, M. K. Azar, S. M. Hosseini, and M. H. Ghezelaiagh, "Measuring bacterial growth by refractive index tapered fiber optic biosensor," J Photoch Photobio B 101, 313-320 (2010).
    42. M. T. Morgan, G. Kim, D. Ess, A. Kothapalli, B. K. Hahm, and A. Bhunia, "Binding inhibition assay using fiber-optic based biosensor for the detection of foodborne pathogens," Key Eng Mat 321-323, 1145-1150 (2006).
    43. P. Lu, L. Q. Men, K. Sooley, and Q. Y. Chen, "Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature," Appl Phys Lett 94(2009).
    44. H. J. R. Dutton, Understanding optical communications, The ITSO networking series (Prentice Hall PTR, Upper Saddle River, N.J., 1998), pp. xxxvi, 760 p.
    45. M. Kerker, The scattering of light, and other electromagnetic radiation, Physical chemistry, a series of monographs, 16 (Academic Press, New York,, 1969), pp. xv, 666 p.
    46. G. Gouesbet and G. Grehan, "Corrections for Mie Theory Given in the Scattering of Light and Other Electromagnetic-Radiation - Comments," Appl Optics 23, 4462-4464 (1984).
    47. P. Venkatesh and C. R. Prasad, "The Scattering of Light and Other Electromagnetic-Radiation," Appl Optics 22, 645-645 (1983).
    48. R. G. Smith, "Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin-Scattering," Appl Optics 11, 2489-& (1972).
    49. H. C. v. d. Hulst, Light scattering by small particles (Dover Publications, New York, 1981), p. 470 p.
    50. D. S. Tucker, G. L. Workman, and G. A. Smith, "Effects of gravity on processing heavy metal fluoride fibers," J Mater Res 12, 2223-2225 (1997).
    51. A. Powell, "The Generation of Sound by the Convection of Inhomogeneities through Space-Varying Flows, by Analogy with the Scattering of Acoustic and Evanescent Waves," J Acoust Soc Am 85, 2346-2353 (1989).
    52. F. d. r. d. Fornel, Evanescent waves : from Newtonian optics to atomic optics, Springer series in optical sciences, (Springer, Berlin ; New York, 2001), pp. xvii, 268 p.
    53. A. Karalis, J. D. Joannopoulos, and M. Soljacic, "Efficient wireless non-radiative mid-range energy transfer," Ann Phys-New York 323, 34-48 (2008).
    54. D. Axelrod, "Cell-Substrate Contacts Illuminated by Total Internal-Reflection Fluorescence," Biophys J 33, A200-A200 (1981).
    55. P. Drude, Zur Elektronentheorie der Metalle, 1. Aufl. ed., Ostwalds Klassiker der exakten Wissenschaften (Deutsch, Frankfurt am Main, 2006), p. 268 p.
    56. M. I. Zibaii, H. Latifi, M. Karami, M. Gholami, S. M. Hosseini, and M. H. Ghezelayagh, "Non-adiabatic tapered optical fiber sensor for measuring the interaction between alpha-amino acids in aqueous carbohydrate solution," Meas Sci Technol 21(2010).
    57. L. L. Xu, Y. Li, and B. J. Li, "Nonadiabatic fiber taper-based Mach-Zehnder interferometer for refractive index sensing," Appl Phys Lett 101(2012).
    58. J. D. Love, W. M. Henry, W. J. Stewart, R. J. Black, S. Lacroix, and F. Gonthier, "Tapered Single-Mode Fibers and Devices .1. Adiabaticity Criteria," Iee Proc-J 138, 343-354 (1991).
    59. R. J. Black, S. Lacroix, F. Gonthier, and J. D. Love, "Tapered Single-Mode Fibers and Devices .2. Experimental and Theoretical Quantification," Iee Proc-J 138, 355-364 (1991).
    60. X. Wang and University of Ottawa. Ottawa-Carleton Institute for Physics., "Characterization of fiber tapers for fiber devices and sensors," (2012).
    61. N. K. Chen and Z. Z. Feng, "Effect of gain-dependent phase shift for tunable abrupt-tapered Mach-Zehnder interferometers," Opt Lett 35, 2109-2111 (2010).
    62. T. H. Xia, A. P. Zhang, B. B. Gu, and J. J. Zhu, "Fiber-optic refractive-index sensors based on transmissive and reflective thin-core fiber modal interferometers," Opt Commun 283, 2136-2139 (2010).
    63. Z. B. Tian, S. S. H. Yam, J. Barnes, W. Bock, P. Greig, J. M. Fraser, H. P. Loock, and R. D. Oleschuk, "Refractive index sensing with Mach-Zehnder interferometer based on concatenating two single-mode fiber tapers," Ieee Photonic Tech L 20, 626-628 (2008).
    64. S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical physics, 3rd ed. (Cambridge University Press, Cambridge ; New York, NY, USA, 1995), pp. xviii, 497 p.

    下載圖示 校內:2019-07-31公開
    校外:2019-07-31公開
    QR CODE