簡易檢索 / 詳目顯示

研究生: 駱世平
Louh, Sei-Ping
論文名稱: 電漿化學氣相沈積法成長低介電常數含氫非晶質碳膜
Growth characteristics of hydrogenated amorphous carbon thin films with low dielectric constant prepared by PECVD
指導教授: 洪敏雄
Hon, M.H.
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 103
中文關鍵詞: 低介電非晶資碳膜電漿化學氣相沈積
外文關鍵詞: Low-K, a-C:H, PECVD
相關次數: 點閱:106下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為降低金屬導線層間之訊息傳遞延遲,除降低線路電阻之外,亦可開發低介電常數材料,以電漿化學氣相法沈積之類鑽薄膜,除具有約2.8之介電常數外,尚有高熱穩定溫度、高硬度及高電阻等特點,但與其他低介電材料相比,其介電常數仍偏高,因此需要調整製程條件及尋找新碳先驅物,以製備低介電之碳膜。本研究以對二甲苯為碳先驅物,經電漿化學氣相沈積法,製備低介電常數之含氫非晶質碳膜。控制電漿製程參數,包括電漿功率、氬氣流量、乙炔濃度、沈積壓力及熱處理溫度,以獲得不同鍵結、組成比例及化學結構之非晶質碳膜,探討沈積行為對碳膜結構、介電常數及機械性質之影響。
    本研究為沈積表面平整且厚度均勻之非晶質碳膜,調整氬氣流量,得到最高沈積速率為40.7 nm/min及最大密度為1.45 g/cm3之碳膜,其源於氬氣流量可控制對二甲苯通量,使從低分子量碳氫鍵結轉變為以sp3碳-氫鍵結為主之碳膜結構,而為區域有序排列之短程碳鏈,最低介電常數為2.28。控制電漿功率,破壞對二甲苯以增加沈積物種量,使碳氫鍵重構為碳碳鍵,最高沈積速率更可高達133.4 nm/min,最大密度也增至1.57 g/cm3,但總介電常數大幅增加至4.73。經鍵結及組成分析,得知電子極化介電只與H/C比例成反比,結構極化介電則因對稱sp3 CH3和sp2 CH鍵結比例增加而降低,而真空極化介電體積則與空孔結構比例相關。
    添加乙炔沈積非晶質碳膜,增強對二甲苯電漿聚合反應,調整離子轟擊能量,可控制苯環之沈積物種量與sp3 CH2等碳氫鍵結比例。熱處理後之碳膜結構,傾向形成強鍵之苯環網絡,同時介電常數穩定於2.82。熱處理去除弱鍵而形成的苯環網絡,有助於降低介面結構差異及提高強鍵比例,使最大硬度值為2.37 GPa,與矽基材間最大附著強度為31.87 MPa。

     For decreasing the RC delay between the interconnect metals, the solution is lowering dielectric constant of the interlayer dielectric, besides reducing the electrical resistance of the interconnect. The amorphous carbon films deposited by PECVD have not only a lower dielectric constant near to 2.8, but also thermal stability, high hardness and high electrical resistance. Compared with other low-k material, however, the amorphous carbon films have not enough low dielectric constant and need to improve the process control or search other carbon precursors for preparing the carbon structure with low dielectric constant. The synthesis of amorphous hydrogenated carbon films with low dielectric constant was performed utilizing para-xylene as carbon precursor by plasma-enhanced chemical vapor deposition. Plasma parameters, including deposition power, deposition pressure, argon flow rate, C2H2 concentration and anneal temperature, were controlled to prepare films with different bonding type, element percentage, chemical structure and density. Besides, effects of deposition behavior on film structures, dielectric constant and mechanical proprieties were investigated.
     The a-C:H films with smooth surface and uniform thickness were deposited by controlling the argon flow rate. From the result of characterization, the appearance of sp3 CH2 and CH3 bonds enhances the formation of hydrocarbon bonds and the local ordered arrays of short carbon chains. The a-C:H films with controlled microstructure and chemical bonds were successfully deposited to have a dielectric constant as low as 2.28. The growth rate and density of films deposited by increasing deposition power have the maximum values of 133.4 nm/min and 1.57 g/cm3, respectively. At the same time, the dielectric constant observably increases up to 4.73. According to the variation of dielectric component and FT-IR spectra, it is found that the reduced is only caused by the increase H/C ratio and the reduced is attributed to the increase of the symmetric sp3 CH3 and sp2 CH. Compared with the Raman spectra, the polarization decreases due to the increase of hydrocarbon. Besides, the decrease of dielectric constant can also be originated from the decrease of dielectric volume relating to the incorporation of porous structure, but the effect of polar groups would be significant as the hydrocarbon increases with decreasing deposition power.
     The increase of C2H2 concentration could promote para-xylene to polymerize, such as to enhance the growth rate and further to decrease the density. It is also found that the aromatic ring gradually increases with reducing deposition power, contributing to the increase of hydrocarbon ratio. It is concluded that the polymerization of paraxylene is controlled by the C2H2 concentration for the form of the sp3 and sp2 hydrocarbon bonds. From the FT-IR and Raman spectroscopy, it is found that the size and number of the sp2 carbons are almost fixed but the number of ordered aromatic rings increases with decreasing deposition power. After the annealing treatment, the hydrocarbon bonds and oxygen related bonds on the surface of the as-deposited films are effectively reduced. However, the dielectric constant increases up to 2.82 due to the aromatic networks which also increases the film hardness up to 2.37 GPa as the films are deposited at 50 W and 50 at.% C2H2 after annealing at 400 oC. Nevertheless, the adhesion strength decreases down to 31.87 MPa with increasing the deposition power and acetylene concentration.

    中文摘要 I Abstract II 總 目 錄 IV 圖 目 錄 VII 表 目 錄 X 英漢名詞與符號對照表 XI 第1章. 緒論 1 第2章. 理論基礎 5 2.1. 導線間介電材料 5 2.1.1. 導線間介電材料種類 5 2.1.2. 導線間介電材料性質需求 7 2.2. 以非晶質碳膜為層間介電材料 10 2.2.1. 非晶質碳膜之介電性質 10 2.2.2. 電漿輔助化學氣相沈積法 15 2.2.3. 沈積氣氛選擇 15 第3章. 研究方法與步驟 19 3.1. 實驗流程 19 3.2. PECVD系統設備 20 3.2.1. 真空系統 21 3.2.2. 電漿產生系統: 21 3.2.3. 原料輸送系統: 22 3.3. 實驗材料選擇 23 3.3.1. 氣態及液態原料: 23 3.3.2. 基材: 23 3.4. 鍍膜步驟 23 3.5. 材料之結構與性質 25 3.5.1. 結構分析 25 3.5.2. 性質檢測 26 第4章. 控制電漿氣氛沈積非晶質碳膜 29 4.1. 引言 29 4.2. 非晶質碳膜之成長特性 30 4.2.1. 非晶質碳膜之顯微外觀 30 4.2.2. 非晶質碳膜之沈積速率 34 4.2.3. 非晶質碳膜之密度 36 4.3. 非晶質碳膜之鍵結結構 38 4.3.1. 傅立葉紅外線光譜 38 4.3.2. 拉曼散射光譜 43 4.4. 非晶質碳膜之介電常數 46 4.5. 小結 49 第5章. 非晶質碳膜鍵結及密度對於介電機制之影響 50 5.1. 引言 50 5.2. 非晶質碳膜之極化機制 52 5.2.1. 碳膜鍵結結構與Δ i 54 5.2.2. H/C比例與Δ e和Δ o 56 5.2.3. 碳氫鍵結與Δ o 58 5.3. 薄膜密度與介電常數 60 5.4. 小結 64 第6章. 添加乙炔對非晶質碳膜介電及機械性質之影響 65 6.1. 引言 65 6.2. 添加乙炔沈積非晶質碳膜之沈積行為 67 6.3. 添加乙炔沈積非晶質碳膜之鍵結結構 71 6.3.1. 傅立葉紅外線光譜 71 6.3.2. 拉曼光譜 73 6.3.3. 光學能障(optical band gap, Eg) 75 6.3.4. 非晶質碳膜結構之熱處理 78 6.4. 添加乙炔及熱處理後之介電常數 80 6.5. 添加乙炔及熱處理後之機械性質 83 6.5.1. 奈米硬度量測 83 6.5.2. 拉力試驗 83 6.6. 小結 87 第7章. 總結論 88 參考資料 90 致 謝 99 自 述 100 著 作 100

    1.Y. Taur and T.H. Ning, “Fundamentals of Modern VLSI Devices”, Cambridge University Press, UK 1998, chap. 5.2.4, p.250-289.
    2.K.H. Block and H.L. Rayle, “Integration of CMP with Low-k materials”, Semiconductor International, June (2002) 115-122.
    3.S.C. Sun, “Process Technologies for Advanced Metalization and Interconnect Systems”, IEDM 1997 15-33.
    4.G. Maier, “Low dielectric constant polymers for microelectronics”, Process in Polymer Science, 26 (2001) 3-65.
    5.M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho and P. S. Ho, “Low dielectric constant materials for ULSI interconnects”, Annual Review of Materials Science, 30 (2000) 645.
    6.A. Grill, “Amorphous carbon based materials as the interconnect dielectric in ULSI chips”, Diamond and Related Materials, 10 (2001) 234-239.
    7.S.S. Han and B.S Baez, “Thermal stability of fluorinated amorphous carbon thin films with low dielectric constant”, Journal of the Electrochemical Society, 148 [4] (2001) F67-F72.
    8.R.H. Vora, P.S.G. Krishnan, S.H. Goh, and T.S. Chung, “Synthesis and properties of designed low-k fluoro-copolyetherimides: Part 1”, Advanced Functional Materials, 11 [5] (2001) 361-373.
    9.International Technology Roadmap for Semiconductors, Interconnects, 2005ed, SEMATECH, http://public.itrs.net/.
    10.A. Grill, “From tribological coatings to low-k dielectrics for ULSI interconnects”, Thin Solid Film, 398-399 (2001) 527-532.
    11.M. O’Neill, A. Lukas, R. Vrtis, J. Vincent, B. Peterson, M. Bitner and E. Karwacki, “ Low-k materials by design”, Semiconductor International, June (2002) 93-99.
    12.J.H. Golden, C.J. Hawker and P.S. Ho, “Designing porous low-k dielectrics”, Semiconductor International, May (2001) 79-88.
    13.L. Peters, “Trends in wafer cleaning”, Semiconductor International, September (1998) 64-68.
    14.K. Maex, M.R. Baklanov, D. Shamiryan, F. Iacopi, S.H. Brongersma and Z.S. Yanovitskaya, “Low dielectric constant materials for microelectronics”, Journal of Applied Physics, 93 [11] (2003) 8793-8841.
    15.L. Peters, “Solving the integration challenges of low-k dielectrics”, Semiconductor International, November (1999) 56-64.
    16.W.W. Lee and P.S. Ho, “Low-Dielectric-Constant Materials for ULSI Interlayer-Dielectric Applications”, MRS Bull, 22 [10] (1997) 19-52.
    17.P. Singer, “Dual-damascene challenges dielectric etch”, Semiconductor International, August (1999) 68-72.
    18.A.E. Braun, “Photostrip faces 300 mm, copper and low-k convergence” Semiconductor International, February (2001) 79-90.
    19.K.H. Block and H.L. Rayle, “Integration of CMP with low-k materials”, Semiconductor International, June (2002) 115-122.
    20.J. Robertson, “Diamond-like amorphous carbon”, Materials Science and Engineering: Report, 37 (2002) 129-281.
    21.A. Grill, “Electrical and optical properties of diamond-like carbon”, Thin Solid Films, 355-356 (1999) 189-193.
    22.A. Ilie, “Electronic transport, photoconductivity and photoluminescence in amorphous carbons”, Diamond and Related Materials, 10 (2001) 207-215.
    23.H.C. Tsai and D.B. Bogy, “Characterization of diamondlike carbon film and their application as overcoats on thin-film media for magnet recoding”, Journal of Vacuum Science and Technology A, 5 [6] (1987) 3287-3312.
    24.A. Grill, “Diamond-like carbon: state of the art”, Diamond and Related Materials, 8 (1999) 428-434.
    25.A. Grill and V. Patel and C. Jahnes, “Novel low k dielectric based on diamondlike carbon materials”, Journal of the Electrochemical Society, 145 [5] (1998) 1649-1653.
    26.C. Zuniga, A. Torres and A. Kosarev, “Strong field charge transport in MIS structures based on low-K carbon films”, Journal of Non-Crystalline Solids, 338-340 (2004) 326-330.
    27.K. Yokota, Y. Miyoshi, and M. Saoyama, “Very low dielectric constants of diamond–like carbon films deposited on ground electrode by plasma-enhanced chemical vapor deposition”, Japanese Journal of Applied Physics, 45 [2A] (2006) 860-867.
    28.J. A. Theil, “Fluorinated amorphous carbon films for low permittivity interlevel dielectrics”, Journal of Vacuum Science and Technology B, 17 [6] (1999) 2397-2410.
    29.M. Aono and S. Nitta, “High resistivity and low dielectric cinstant amorphous carbon nitride filmes: application to low-k materials for ULSI”, Diamond and Related Materials, 11 (2002) 1219-1222.
    30.K. Endo and T. Tatsumi, “Amorphous carbon thin films containing benzene rings for use as low-dielectric-constant interlayer dielectrics”, Applied Physics Letter, 70 [19] (1997) 2616-2618.
    31.Y.C. Quan, J. Joo, and D. Jung, “Polymer-like organic thin films deposited by plasma enhanced chemical vapor deposition using the para-xylene precursor as low dielectric constant interlayer dielectrics for multilevel metallization”, Japan Journal of Applied Physics, 38 (1999) 1356-1358.
    32.Y.C. Quan, J. Joo, S. Yeo and D. Jung, “Effects of deposition pressure on the properties of a low-dielectric constant cyclohexane-based plasma polymer”, Japan Journal of Applied Physics, 39 (2000) 1325-1326.
    33.J. Yang, C. Shin and D. Jung, “Plasma enhanced CVD of low dielectric constant plasma polymerized decahydronaphthalene thin films”, Chemical Vapor Deposition, 8 [1] (2002) 35-37.
    34.L. Peters, “Low-k dielectrics: Will spin-on or CVD prevail?”, Semiconductor International, June (2000) 108-124.
    35.D.J. Thomas, Y.P. Song and K. Powell, “Meeting ITRS roadmap challenges with low-k dielectric etching”, Solid State Technology, March (2001) 107-116.
    36.P. Koidl, C. Wanger, B. Dischler, J. Wanger and M. Ramsteiner, “Plasma deposition, properties and structure of amorphous hydrogenated carbon film”, Material Science Forum, 52 (1990) 41-70.
    37.J.W. Zou, K. Schmidt, K. Reichelt and D. Dischler, “The properties of a-C:H films deposited by plasma decomposition of C2H2”, Journal Applied Physics, 67 (1989) 487-494.
    38.M. Veres, M. Koos and I. Pocsik, “IR study of the formation process of polymeric hydrogenated amorphous carbon film”, Diamond and Related Materials, 11 (2002) 1110-1114.
    39.K. Saito , T. Itoh, Y. Katoh, N. Okada, A. Hatta, H. Inomoto, S. Nitta, S. Nonomura and A. Hiraki, “Properties and electron field emission of highly resistive and transparent polymer-like a-C:H”, Journal of Non-Crystalline Solids, 266-269 (2000) 788-792.
    40.K.S. Kim, Y.C. Jang , H.J. Kim, Y.C. Quan, J. Choi, D. Jung and N. E. Lee, “The interface formation and adhesion of metals (Cu, Ta, and Ti) and low dielectric constant polymer-like organic thin films deposited by plasma-enhanced chemical vapor deposition using para-xylene precursor”, Thin Solid Films, 377-378 (2000) 122-128.
    41.W.A. Nevin, H. Yamagishi and Y. Tawada, “Wide band-gap hydrogenated amorphous-silicon carbide prepared from a liquid aromatic carbon source”, Journal of Applied Physics, 72 [10] (1992) 4989-4991.
    42.A.G. Osborn and D.R. Douslin, “Vapor-Pressure Relations for 15 Hydrocarbons”, Journal of Chemical Engineering Data, 19 [2] (1974) 114-117.
    43.S.H. Rhee, M.D. Radwin, M.F. Ng, J.I. Martin and D. Erb, “ Cauclation of effective dielectric constants for advanced interconnect structures with low-k dielectrics”, Applied Physics Letters, 83 [13] (2003) 2644-2646.
    44.J. Tauc, R. Grigorovici and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium”, Physica Status Solidi 15 (1966) 627-637.
    45.Z.R. Song, Y.H. Yu, C.L. Li, S.C. Zou, F.M. Zhang, X. Wang, D.S. Shen, E.Z. Luo, B. Sundaravel, S. Wang and I.H. Wilson, “Tetrahedral amorphous-carbon thin films for silicon-on-insulator application”, Applied Physics Letters, 80 [5] (2002) 743-745.
    46.L. Peters, “2001 roadmap identifies R&D targets, showstoppers”, Semiconductor International, January (2002) 21-23.
    47.J. Yang, C. Shin and D. Jung, “Effects of post-deposition heat treatment on the properties of low dielectric constant plasma polymerized decahydronaphthalene thin films deposited by plasma-enhanced chemical vapor deposition”, Japan Journal of Applied Physics, 39 (2000) L1324.
    48.A. Grill and D.A. Neumayer, “Structure of low dielectric constant to extreme low dielectric constant SiCOH films: Fourier transform infrared spectroscopy characterization”, Journal of Applied Physics, 94 [10] (2003) 6697-6707.
    49.T. Heitz, B. Drevillon, C. Godet and J.E. Bouree, “C–H bonding of polymer-like hydrogenated amorphous carbon films investigated by in-situ infrared ellipsometry”, Carbon, 37(1999) 771-775.
    50.X.G. Guo, Y.J. Ge and G.Q. Zhang, “Investigation on crystalline behavior of polymerized products in p-xylene plasma”, Journal of the Korean Physical Society, 42 [3] (2003) S890-892.
    51.D.L. Pavia, G.M. Lampman and G.S. Kriz, “Introduction to Spectroscopy”, Thomson Learning, U.S.A. 2001.
    52.M. Koos, M. Veres, M. Fule and I. Pocsik, “Ultraviolet photoluminescence and its relation to atomic bonding properties of hydrogenated amorphous carbon”, Diamond and Related Materials, 11 (2002) 53-58.
    53.S. Sugahara, T. Kadoya, K. Usami, T. Hattori and M. Matsumura, “Preparation and characterization of low-k silica film incorporated with methylene groups”, Journal of The Electrochemical Society, 148 [6] (2001) F120-126.
    54.A.C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon”, Physical Review B, 61 [20] (2000) 14095-14107.
    55.J. Robertson and E.P. O’Reilly, “Electronic and atomic structure of amorphous carbon”, Physical Review B, 35 [6] (1987) 2946-2957.
    56.J.M. Shieh, K.C. Tsai, B.T. Dai, Y.C. Wu and Y.H. Wu, “Reduction of etching plasma damage on low dielectric constant fluorinated amorphous carbon films by multiple H2 plasma treatment”, Journal of Vacuum Science and Technology B, 20 [4] (2002) 1476-1481.
    57.Handbook of Chemistry and Physics, 81st ed., edited by D.R. Lide, pp. 9-52, Boca Raton, FL, 2001.
    58.S.P. Louh, I.C. Leu and M.H. Hon, “Preparation and characterization of plasma deposited para-xylene a-C:H films with low dielectric constant.”, Diamond and Related Materials, 14 [3-7] (2005) 1005-1009.
    59.Y.H. Zhang, S.G. Lu, Y.Q. Li, Z.M. Dang, J.H. Xin, S.Y. Fu, G.T. Li, R.R. Guo and L.F. Li, “Novel silica tube/polyimide composite films with low dielectric constant”, Advanced Materials, 17 [8] (2005) 1056-1059.
    60.B. Lee, W. Oh, Y. Hwang, Y.H. Park, J. Yoon, K.S. Jin, K. Heo, J. Kim, K.W. Kim and M. Ree, “Imprinting-controlled nanopores in organosilicate dielectric films: triethoxysilyl-modified six-armed poly(ε-caprolactone) and its chemical hybridization with organosilicate precursor”, Advanced Materials, 17 [6] (2005) 696-701.
    61.C. Kittel, “Introduction to solid state physics”, 7th ed., John Wiley & Sons, Inc., New York 1996, chap. 13, p. 390-392.
    62.S. M. Han and E. S. Aydil, “Reasons for lower dielectric constant of fluorinated SiO2 films”, Journal of Applied Physics, 83 [4] (1998) 2172-2178.
    63.C. Himcinschi, M. Friedrich, S. Fruhaul, S. E. Schulz, T. Gessner and D.R.T. Zahn, “Contributions to the static dielectric constant of low-k xerogel films derived from ellipsometry and IR spectroscopy”, Thin Solid Films, 455-456 (2004) 433-437.
    64.K. Endo, K. Shinoda and T. Tatsumi, “Plasma deposition of low-dielectric-constant fluorinated amorphous carbon”, Journal of Applied Physics, 86 [5] (1999) 2739-2744.
    65.S. W. Lim, Y. Shimogaki, Y. Nakano, K. Tada and H. Komiyama, “Preparation of low-dielectric-constant F-doped SiO2 films by plasma-enhanced chemical vapor deposition”, Japan Journal of Applied Physics, 35 [2B] (1996) 1468-1473.
    66.T. Heitz, C. Godet, J. E. Bouree and B. Drevillon, “Radiative and nonradiative recombination in polymerlike a-C:H films”, Physical Review B, 60 [8] (1999) 6045-6052.
    67.G. R. Flowles, H.B. Hollinger, J, Grebowicz and B. Wunderlich, “On the conformations of poly(p-xylylene) and its mesophase transitions”, Macromolecules, 23 [16] (1990) 3855-3859.
    68.Q. Wu and K.K. Gleason, “Plasma-enhanced chemical vapor deposition of low-k dielectric films using methylsilane, dimethylsilane, and trimethylsilane precursors”, Journal of Vacuum Science and Technology, A 21 [2] (2003) 388-393.
    69.K. Endo and T. Tatsumi, “Fluorinated amorphous carbon thin films grown by plasma enhanced chemical vapor deposition for low dielectric constant interlayer dielectrics”, Journal of Applied Pyhsics, 78 (1995) 1370-1372.
    70.Y.H. Kim, S.K. Lee and H.J. Kim, “Low-k Si–O–C–H composite films prepared by plasma-enhanced chemical vapor deposition using bis-trimethylsilylmethane precursor”, Journal of Vacuum Science and Technology A, 18 [4] (2000) 1216-1219.
    71.M.E. Thomas, N. Iwamoto, D. Smith and S. Wallace, “Transport phenomena in porous low-k dieletrics”, Semicondustor International, June (2002) 105-112.
    72.S.P. Louh, I.C. Leu and M.H. Hon, “Effects of density and bonding structure on dielectric constant of plasma deposited a-C:H films.”, Diamond and Related Materials, 14 [3-7] (2005) 1000-1004.
    73.J. Ye, N. Kojima, K. Ueoka and J. Shimanuki, “Nanoscratch evaluation of adhesion and cohesion in SiC/low-k/Si stacked layers”, Journal of Applied Physics, 95 [7] (2004) 3704–3710.
    74.G.B. Alers, K. Jow, R. Shaviv, G. Kooi and G.W. Ray, “Interlevel dielectric failures in copper/low-k structures”, IEEE Transactions on Device and Materials Reliability, 4 [2] (2004) 148-152.
    75.A.K. Sikder, I.M. Irfan, A. Kumar and J.M. Anthony, ”Nano-indentation studies of xerogel and SiLK low-K dielectric materials”, Journal of Electronic Materials, 30 [12] (2001) 1527-1531.
    76.S.Y. Chang, T.J. Chou, Y.C. Lu, S.M. Jang, S.J. Lin and M.S. Liang, ”Curing Process Window and Thermal Stability of Porous MSQ-Based Low-Dielectric-Constant Materials”, Journal of The Electrochemical Society, 151 [6] (2004) F146-F152.
    77.Y.H. Wang, M.R. Moitreyee, R. Kumar, S.Y. Wu, J.L. Xie, P. Yew, B. Subramanian and L. Shen, “The mechanical properties of ultra-low-dielectric-constant films”, Thin Solid Films, 462-463 (2004) 227-230.
    78.J.M. Larson, M.T. Swihart and S.L. Girshick, “Characterization of the near-surface gas-phase chemical environment in atmospheric-pressure plasma chemical vapor deposition of diamond”, Diamond and Related Materials, 8 [10] (1999) 1863-1874.
    79.F. Thiery, Y. Pauleau, J.J. Grob and D. Babonneau, “Structural characteristics of copper/hydrogenated amorphous carbon composite films prepared by microwave plasma-assisted deposition processes from methane–argon and acetylene–argon gas mixtures”, Thin Solid Films, 466 (2004) 10-15.
    80.C.J. Rennick, A.G. Smith, J.A. Smith, J.B. Wills, A.J. Orr-Ewing , M.N. R. Ashfold, Y.A. Mankelevich and N.V. Suetin, “Improved characterisation of C2 and CH radical number density distributions in a DC arc jet used for diamond chemical vapour deposition”, Diamond and Related Materials, 13 [4-8] (2004) 561-568.
    81.L. Zajıckova, S. Rudakowski, H.W. Becker, D. Meyer, M. Valtr and K. Wiesemann, “Study of plasma polymerization from acetylene in pulsed r.f. discharges”, Thin Solid Films, 425 (2003) 72-84.
    82.T. Seth and P. Roca i Cabarrocas, “Plasma deposition of carbon films at room temperature from C2H2–Ar mixtures: anodic vs. cathodic films”, Thin Solid Films, 383 (2001) 216-219.
    83.A. Golanski, F. Piazza, J. Werckmann, G. Relihan and S. Schulze, “Stress field effects on the microstructure and properties of a-C:H thin films”, Journal of Applied Physics, 92 [7] (2002) 3662-3670.
    84.Y.L. Cheng, Y.L. Wang, J.K. Lan, H.C. Chen, J.H. Lin, Y.L. Wu, P.T. Liu, Y.C. Wu and M.S. Feng, “Effect of carrier gas on the structure and electrical properties of low dielectric constant SiCOH film using trimethylsilane prepared by plasma enhanced chemical vapor deposition“, Thin Solid Films, 469-470 (2004) 178-183.
    85.Q. Wei, A.K. Sharma, J. Sankar, J. Narayan, “Mechanical properties of diamond-like carbon composite thin films prepared by pulsed laser deposition”, Composites B: Engineering, 30 [7] (1999) 675-684.

    下載圖示 校內:2007-08-30公開
    校外:2007-08-30公開
    QR CODE