簡易檢索 / 詳目顯示

研究生: 劉永智
Liu, Yong-Zhi
論文名稱: 利用逆算法和實驗溫度值估算CPU上之散熱鰭片的熱傳係數
Application of the Inverse Method to Estimate Heat transfer Coefficient on CPU Heatsink using Experimental Temperature Data
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 66
中文關鍵詞: 平均熱傳係數鰭片間距混合逆算法鰭片高度
外文關鍵詞: average convection heat transfer coefficient, fin height, fin spacing, hybird inverse scheme
相關次數: 點閱:166下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以混合拉氏轉換法(Laplace transform technique)與有限差分法 (Finite difference method)的數值方法並配合最小平方法 (Least-squares scheme)及標準測試件之溫度量測值來預測CPU之散熱鰭片的散熱量與平均熱傳係數。由於標準測試件的厚度遠小於其長度與寬度,故本文以一維的數學模式來描述,並配合標準測試件之內部量測溫度來預估標準測試件表面溫度及表面熱通量。
    結果顯示於自然對流(Free convection)與強迫對流(Forced convection)之環境下,鰭片間距與鰭片高度對本文預測值的影響不容忽視。自然對流環境下,平均熱傳係數會隨鰭片間距增大而增加,卻隨鰭片高度增高而減少。而本文之強迫對流(Forced convection)之平均熱傳係數的預測值將與相關文獻相比較,已驗証本文逆算法之準確性及合理性。

    The present study applies the hybrid method of the Laplace transform technique and finite-difference method in conjunction with least-squares scheme and experimental temperature data to predict the heat dissipation and the average convection heat transfer coefficient on CPU heatsink. Due to the thickness of the standard test material is very smaller than its length and width, the one-dimension mathematical model is applied to perform the present inverse analysis. The effects of the fin spacing and fin height on the present estimates can not be negligible for free convection and forced convection. The free convection heat transfer coefficient is increased with increasing the fin spacing and is decreased with increasing the fin height. A comparison of the forced convection heat transfer coefficient between the present estimates and previous results is made in order to evidence the accuracy and reliability of the present inverse scheme.

    中文摘要………………………………………………………Ⅰ 英文摘要………………………………………………………II 誌謝……………………………………………………………III 目錄……………………………………………………………IV 表目錄…………………………………………………………VI 圖目錄…………………………………………………………VIII 符號說明………………………………………………………XII 第一章 緒論……………………………………………………1 1-1 研究背景………………………………………1 1-2 文獻回顧………………………………………2 1-3 研究目的………………………………………4 1-4 研究重點與架構………………………………5 第二章 理論分析………………………………………………6 2-1 簡介……………………………………………6 2-2 數學模式………………………………………6 2-3 數值分析………………………………………7 第三章 實驗操作與數據分析…………………………………14 3-1 簡介……………………………………………14 3-2 實驗設備………………………………………14 3-3 實驗步驟………………………………………17 3-4 實驗結果與討論………………………………18 第四章 綜合結論與未來發展…………………………………60 4-1 本文逆算法之討論……………………………60 4-2 綜合結論………………………………………61 4-3 未來發展與建議………………………………61 參考文獻………………………………………………………63

    參考文獻

    [1]J.V. Beck, Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, 62(1962) pp.46-51.

    [2]J.V. Beck, Analysis of order of the sequential regulation solutions of heat conduction problem, ASME J. Heat Transfer, 111(1989) pp.218-224.

    [3]E.M. Sparrow, A. Haji-Sheikh and T.S. Lundgern, The inverse problem in transient heat conduction, J. Appl. Mech., 86e (1964) 369-375.

    [4]M.N. Özisik, A direct analytical approach for solving linear inverse heat conduction problems, ASME J. Heat Transfer, 107 (1985) 700-703.

    [5]M.N. Özisik, Inverse problem of determining the unknown wall heat flux in laminar flow through a parallel plate duct, Numer. Heat Transfer, Part A, 21 (1992) 55-70, 1992.

    [6]D.R. Haper, and W.B. Brown, Mathematical equations for heat conduction in the Fins of Air cooled Engines, N. A. C. A. Rept, 1922(158).

    [7]T.E. Schmidt, Heat transfer calculations for extended surfaces, Refrigerating Engineering (1949) 351-357.

    [8]W. Elenbaas, The heat dissipation of parallel plates by free convection. Physica, 1 (1942) 1-28.

    [9]W. Elenbaas, The dissipation of heat by free convection-the inner surfaces of vertical tubes of different shapes of cross section, Physica, 8 (1942) 865-874.
    [10]S. Ostrach, Laminar natural-convection flow and heat transfer of fluids with and without heat sources in channels with constant wall temperatures, NACA Tech. Note 2863, 1952.

    [11]J.R. Bodoia and J.F. Osterle, The development of free convection between heated vertical plates, ASME J. Heat Transfer, 84 (1962) 40-44.

    [12]H.N. McManus and K.E. Starner, An experimental investigation of free-convection heat transfer from rectangular-fin arrays, ASME J. Heat Transfer (1963) 273-277.

    [13]H.N. McManus and F. Harahap , Natural convection heat transfer from horizontal rectangular fin arrays, ASME J. Heat Transfer (1967) 34-37.

    [14]F. Kreith and M.S. Bohn, Principles of heat transfer, 5th ed., west Publishing Company,Chapter 5 (1993) 349-350.

    [15]C.D. Jones and L.F. Smith, Optimun arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer, ASME J. Heat Transfer (1970) 6-10.

    [16]E. Velayati and M. Yaghoubi, Numerical study of convection heat transfer from an array of parallel bluff plates, Int. J. Heat Fluid Flow 26 (2005) 80-91.

    [17]S. Lee, Optimum Design and Selection of Heat Sinks, Proceedings of 11th IEEE Semi-Term Symposium (1995) 48-54.

    [18]張文奎,散熱鰭片擴散熱阻之分析, 國立清華大學工程與系統科學研究所,碩士碩文, 2002.

    [19]劉建佳,Pentium 4 散熱模組底板具凸起物之散熱性能研究, 國立台灣科技大學機械工程研究所,碩士論文,2002.

    [20]H.T. Chen and J.Y. Lin, Hybrid Laplace transform technique for non-linear transient thermal problems, Int. J. Heat Mass Transfer, 31 (1991) 1301-1308.

    [21]H.T. Chen and J.Y. Lin, Numerical analysis for hyperbolic heat conduction, Int. J. Heat Mass Transfer, 36 (1993) 2891-2898.

    [22]H.T. Chen, and Lin J. Y., Analysis of two-dimensional hyperbolic heat conduction problems, Int. J. Heat Mass Transfer, 37 (1994) 153-164.

    [23]G. Honig, and U. Hirdes, A method for the numerical inversion of Laplace transforms, J. Comp. Appl. Math., 10 (1984) 113-132.

    [24]許芳銘, 利用逆算法配合實驗數據估算CPU基座之散熱效果,國立成功大學機械工程學系, 碩士論文 , 2004.

    [25]J.T. Wang, C.I. Weng and J.G. Chang, The influence of temperature and surface conditions on surface absorptivity in laser surface treatment, J. Appl. Phy. 87 (2000) 3245-3253.

    [26]Y.S. Sun, C.I. Weng and T.C. Chen, W. L. Li, Estimation of surface absorptivity and surface temperature in laser surface hardening process, Jpn. J. Appl. Phys. 35 (2000) 3658-3664.

    [27]J.P. Holman, W.J. Gajda, Jr, Experimental Methods for Engineers,
    5th Ed., McGraw-Hill, New York, 1989, pp.37-83.

    [28]M.N. Özisik, Heat conduction, 2nd ed., John Wiley and Sons, New York, 1993.

    下載圖示 校內:立即公開
    校外:2006-07-27公開
    QR CODE