簡易檢索 / 詳目顯示

研究生: 許哲裕
Hsu, Che-Yu
論文名稱: 以cDNA microarray雜交方法分析肝癌細胞株由C型肝炎病毒NS2蛋白所誘發的基因表現差異
Analysis of Differentially Expressed Genes Induced by NS2 Protein of Hepatitis C Virus in Hepatoma Cell Lines with cDNA Microarray Hybridization
指導教授: 張定宗
Chang, Ting-Tsung
楊孔嘉
Young, Kung-Chia
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 135
中文關鍵詞: cDNA微陣列CD9CD81NS2蛋白HuH-7C型肝炎病毒
外文關鍵詞: Hepatitis C virus (HCV), NS2 protein, CD9, cDNA microarray, HuH-7, CD81
相關次數: 點閱:150下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    C型肝炎病毒(HCV)是造成輸血後肝炎的主要病原,其感染分佈現已成全球化趨勢,根據世界衛生組織統計,全世界已有超過3%以上人口受HCV感染,也就是說全球有一億七千萬人感染HCV。HCV感染後,約有80%急性C型肝炎病患會轉變為慢性C型肝炎,其中20%會繼續惡化成肝硬化,最後約有1-4%病人會發展成肝癌。目前臨床上較有效的療法是採用甲型干擾素與Ribavirin的合併治療,但也只有約40%病患有療效,也就是說更有效的治療策略仍有待研發。至於疫苗的發展亦是困難重重,導因於病毒基因的突變率太高,甚至無法保護再次受到同一病毒感染。HCV屬Flaviviridae科、Hepacivirus屬,病毒顆粒外包被有套膜,基因體約為9.6 kb的正股RNA,僅具一段開放性讀架,可先轉譯出一段約含3010個胺基酸的多蛋白前驅物,之後再經宿主細胞的訊號蛋白和病毒本身的蛋白切割出10個成熟的病毒蛋白:C、E1、E2、p7、NS2、NS3、NS4A、NS4B、NS5A和NS5B。NS2為23 kD的越膜蛋白,被認為是NS5A磷酸化所必需,但直到現在,科學家對它在肝細胞中的功能仍所知甚微,本研究的最終目標即想了解,NS2在HCV的致病過程中扮演什麼角色,故藉由cDNA microarray雜交方法分析轉染pEGFP-N1和pNS2-2-EGFP的肝癌細胞株HuH-7中,由C型肝炎病毒NS2蛋白所誘發的基因表現差異。將瞬時轉染的HuH-7以G418 (500 µg/mL)篩選培養,挑選出穩定轉染細胞株,含有pEGFP-N1的細胞株便定名為N1-H01,而擁有pNS2-2-EGFP的就稱作NS2-H01,之後便以PCR偵測NS2基因,RT-PCR和Western blotting檢測NS2-EFGP的RNA和蛋白質表現,在PCR和RT-PCR的實驗結果,均可在NS2-H01中發現600 bp特異性線帶出現,而在Western blotting中亦可見50 kD特異性線帶顯現,NS2-EGFP的持續表現亦可由NS2-H01中微弱的綠色螢光得到印證。在cDNA microarray分析結果中,CD9位居mRNA上升表達基因之首,而在FACS的實驗數據中,亦可見CD9表現量在NS2-H01有被增加調控,但CD81卻被降低調控。CD9和CD81皆屬tetraspanin superfamily一員,其特徵為具有四段越膜區段,有研究報告指出,CD9可與pro-HB-EGF結合,因而改變其構型,造成細胞生長速率加快,於是便分析MTT assay,發現NS2-H01細胞株的確長得比N1-H01快,這與先前研究報告結果相吻合。總之,HCV NS2可在HuH-7中增加調控CD9和降低調控CD81表現量,除此之外,HCV NS2亦可增快肝癌細胞株的生長。本實驗顯示出HCV NS2蛋白具有調節肝細胞的功能,而此發現將有助於未來HCC的相關研究。

    Abstract
    Hepatitis C virus (HCV) is the major etiological agent of post-transfusion hepatitis and widespread globally. According the World Health Organization survey, up to 3% of the world's population being infected with HCV, it suggests that more than 170 million people worldwide be infected by HCV. About 80% of patients with acute HCV infection progress to chronic hepatitis, 20% of these to cirrhosis, and 1 to 4% to hepatocellular carcinoma (HCC). The current therapy available is combinational treatment with alpha interferon and ribavirin. That only 40% of all patients beneficial from this treatment to develop a sustained response calls the urgent need for more effective antiviral therapeutics. Vaccine development has been hampered by a high degree of antigenic variation and the lack of protection against viral reinfection. HCV has been classified as the sole member of a distinct genus called Hepacivirus in the Flaviviridae family. The enveloped virion has a positive-stranded linear RNA genome of approximately 9.6 kb and a large open reading frame encoding a precursor polyprotein of about 3010 amino acids. This polyprotein is cleaved by host cellular signalase(s) and viral proteases into 10 mature viral proteins: C, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B. The NS2, a 23kD transmembrane polypeptide, has shown to be required for NS5A phosphorylation. However, little is known about the effects of NS2 on human liver cells. The specific aim of this study is to investigate the role of NS2 protein in the pathogenesis of HCV. cDNA microarray hybridization was exploited to characterize the differentially expressed genes induced by HCV NS2 in the hepatoma cell lines HuH-7 with the transfection of pEGFP-N1 and pNS2-2-EGFP. The transiently transfected HuH-7 cells were selected by G418 (500 µg/mL) to obtain stably cell lines carrying pEGFP-N1 and pNS2-2-EGFP, which were designed as N1-H01 and NS2-H01 cells. The existence of NS2 gene was demonstrated by PCR and the expression of NS2-EFGP was analyzed with RT-PCR as well as western blotting by RNA and protein. The PCR and RT-PCR resulted in 600 bp specific bands in NS2-H01 cells and the western blotting demonstrated a 50 kD specific band. The constitutively NS2-EGFP expression was also evidenced by the emitted green fluorescence light in NS2-H01 cells. In cDNA microarray assay, CD9 was on top of the list by mRNA level elevated in NS2-H01 cells. FACS analysis showed the up-regulation of CD9 molecules but the down-regulation of CD81 molecules in NS2-H01 as compared to N1-H01 and HuH-7 cells. Both CD9 and CD81 belong to tetraspanin superfamily by the characterization of the four conserved transmembrane segments. CD9 has been shown to bind to pro-HB-EGF (precursor of heparin-binding-epidermal growth factor) and modify the conformation of pro-HB-EGF, which might boost the cellular growth rate. According to the MTT assay, NS2-H01 had a higher growth rate than N1-H01, which agrees with the evidence of the previous report. In conclusion, HCV NS2 up-regulated CD9 and down-regulated CD81 expression in HuH-7 cells. In addition, HCV NS2 facilitated the growth of hepatoma cells. This study reveals the effects of HCV NS2 protein on hepatocyte modulation, with the relevance to HCC remaining further investigation.

    目錄(Index) 中文摘要I 英文摘要III 誌謝V 目錄VI 圖/表/附錄目錄VIII 藥品與儀器X 第一章緒論(Introduction) 1 一. C型肝炎病毒2 二. HCV NS2研究近況13 三. cDNA微陣列技術14 四. Tetraspanin家族16 五. 研究目的與策略17 第二章材料與方法(Materials and Methods) 19 壹. 建立轉染C型肝炎病毒NS2基因的穩定肝癌細胞株 一. 細胞培養20 二. 勝任細胞備製23 三. 質體萃取26 四. 建立穩定轉染細胞株31 貳. 以cDNA microarray雜交方法分析肝癌細胞株由C型肝炎病毒NS2蛋白所誘發的基因表現差異 五. 檢測穩定轉染細胞株的標的質體35 六. 檢測穩定轉染細胞株中標的基因所轉錄的mRNA 39 七. 檢測穩定轉染細胞株中標的基因所轉譯的蛋白質45 八. 以cDNA microarray雜交方法分析穩定轉染細胞株的50 基因表現差異 九. 流式細胞儀分析:CD9、CD81偵測57 十. MTT分析:生長速率測定59 第三章結果(Results) 60 壹. 建立轉染C型肝炎病毒NS2基因的穩定肝癌細胞株 一. 質體萃取61 二. 建立穩定轉染細胞株62 貳. 以cDNA microarray雜交方法分析肝癌細胞株由C型肝炎病毒NS2蛋白所誘發的基因表現差異 一. 檢測穩定轉染細胞株的標的質體64 二. 檢測穩定轉染細胞株中標的基因所轉錄的mRNA 65 三. 檢測穩定轉染細胞株中標的基因所轉譯的蛋白質66 四. 以cDNA microarray雜交方法分析穩定轉染細胞株的68 基因表現差異 五. 流式細胞儀分析:CD9、CD81偵測70 六. MTT分析:生長速率測定73 第四章討論(Discussion) 75 一. 難題與挑戰76 二. 建立轉染C型肝炎病毒NS2基因的穩定肝癌細胞株77 三. 以cDNA microarray雜交方法分析肝癌細胞株由C型肝炎病毒79 NS2蛋白所誘發的基因表現差異 參考文獻(References) 82 圖/表(Figures/Tables) 89 附錄(Appendixes) 111 自述(Author) 120

    [1] Wasley A. Alter MJ. Epidemiology of hepatitis C: geographic differences and temporal trends. Seminars in Liver Disease. 20(1):1-16, 2000.
    [2] Sun CA. Chen HC. Lu SN. Chen CJ. Lu CF. You SL. Lin SH. Persistent hyperendemicity of hepatitis C virus infection in Taiwan: the important role of iatrogenic risk factors. Journal of Medical Virology. 65(1):30-4, 2001.
    [3] Yu ML. Chuang WL. Chen SC. Dai CY. Hou C. Wang JH. Lu SN. Huang JF. Lin ZY. Hsieh MY. Tsai JF. Wang LY. Chang WY. Changing prevalence of hepatitis C virus genotypes: molecular epidemiology and clinical implications in the hepatitis C virus hyperendemic areas and a tertiary referral center in Taiwan. Journal of Medical Virology. 65(1):58-65, 2001.
    [4] Alter MJ. Epidemiology of hepatitis C in the West. Seminars in Liver Disease. 15(1):5-14, 1995.
    [5] Garfein RS. Vlahov D. Galai N. Doherty MC. Nelson KE. Viral infections in short-term injection drug users: the prevalence of the hepatitis C, hepatitis B, human immunodeficiency, and human T-lymphotropic viruses. Am J Public Health. 86: 655-61, 1996.
    [6] Alter HJ. Seeff LB. Recovery, persistence, and sequelae in hepatitis C virus infection: a perspective on long-term outcome. Seminars in Liver Disease. 20(1):17-35, 2000.
    [7] Farci P. Alter HJ. Govindarajan S. Wong DC. Engle R. Lesniewski RR. Lack of protective immunity against reinfection with hepatitis C virus. Science. 258:135-40, 1992.
    [8] Kuo G. Choo QL. Alter HJ. Gitnick GL. Redeker AG. Purcell RH. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 244:362-4, 1989.
    [9] Young KK. Archer JJ. Yokosuka O. Omata M. Resnick RM. Detection of hepatitis C virus RNA by a combined reverse transcription PCR assay: comparison with nested amplification and antibody testing. J Clin Microbiol. 33:654-7, 1995.
    [10] Koretz RL. Brezina M. Polito AJ. Quan S. Wilber J. Dinello R. Non-A, non-B posttransfusion hepatitis: comparing C and non-C hepatitis. Hepatology. 17:361-5, 1993.
    [11] Liang TJ. Jeffers L. Reddy RK. Silva MO. Cheinquer H. Findor A. Fulminant or subfulminant non-A, non-B viral hepatitis: the role of hepatitis C and E viruses. Gastroenterology. 104:556-62, 1993.
    [12] Alter MJ. Margolis HS. Krawczynski K. Judson FN. Mares A. Alexander WJ. The natural history of community-acquired hepatitis C in the United States. N Engl J Med. 327:1899-905, 1992.
    [13] Koff RS. Dienstag JL. Extrahepatic manifestations of hepatitis C and the association with alcoholic liver disease. Semin Liver Dis. 15:101-9, 1995.
    [14] Di Bisceglie AM. Hepatitis C and hepatocellular carcinoma. Hepatology. 26(3 Suppl 1):34S-38S, 1997.
    [15] Seeff LB. Natural history of viral hepatitis, type C. Semin Gastrointest Dis. 6:20-7, 1995.
    [16] Marcellin P. Boyer N. Giostra E. Degott C. Courouce AM. Degos F. Coppere H. Cales P. Couzigou P. Benhamou JP. Recombinant human alpha-interferon in patients with chronic non-A, non-B hepatitis: a multicenter randomized controlled trial from France. Hepatology. 13(3):393-7, 1991.
    [17] Davis GL. Lau JY. Factors predictive of a beneficial response to therapy of hepatitis C. Hepatology. 26(3 Suppl 1):122S-127S, 1997.
    [18] Koskinas J. Tibbs C. Saleh MG. Pereira LM. McFarlane IG. Williams R. Effects of ribavirin on intrahepatic and extrahepatic expression of hepatitis C virus in interferon nonresponsive patients. Journal of Medical Virology. 45(1):29-34, 1995.
    [19] Bodenheimer HC Jr. Lindsay KL. Davis GL. Lewis JH. Thung SN. Seeff LB. Tolerance and efficacy of oral ribavirin treatment of chronic hepatitis C: a multicenter trial. Hepatology. 26(2):473-7, 1997.
    [20] Liptakova H. Kontsekova E. Kabat P. Hajnicka V. Oltman M. Stancek D. Fuchsberger N. Kontsek P. Therapy-induced antibodies to interferon-alpha 2a recognise its receptor-binding site. Acta Virologica. 42(5):279-84, 1998.
    [21] Koizumi K. Enomoto N. Kurosaki M. Murakami T. Izumi N. Marumo F. Sato C. Diversity of quasispecies in various disease stages of chronic hepatitis C virus infection and its significance in interferon treatment. Hepatology. 22(1):30-5, 1995.
    [22] Saracco G. Rosina F. Abate ML. Chiandussi L. Gallo V. Cerutti E. Di Napoli A. Solinas A. Deplano A. Tocco A. Long-term follow-up of patients with chronic hepatitis C treated with different doses of interferon-alpha 2b. Hepatology. 18(6):1300-5, 1993.
    [23] Malik UR. Makower DF. Wadler S. Interferon-mediated fatigue. Cancer. 92(6 Suppl):1664-8, 2001.
    [24] Samuel CE. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology. 183(1):1-11, 1991.
    [25] Foster GR. Interferon in host defense. Semin Liver Dis. 17:287-94, 1997.
    [26] Darnell JE Jr. Kerr IM. Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 264(5164):1415-21, 1994.
    [27] De Francesco R. Neddermann P. Tomei L. Steinkuhler C. Gallinari P. Folgori A. Biochemical and immunologic properties of the nonstructural proteins of the hepatitis C virus: implications for development of antiviral agents and vaccines. Semin Liver Dis. 20(1):69-83, 2000.
    [28] Choo QL. Kuo G. Weiner AJ. Overby LR. Bradley DW. Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome Science. 244:359-62, 1989.
    [29] Murphy FA. Fauquet CM. Bishop DHL. Ghabrial SA. Jarvis AW. Martelli GP. Mayo MA. Summers MD. Virus Taxonomy. Sixth Report of the International Committee on Taxonomy of Viruses, pp. 424-26. Vienna & New York: Springer-Verlag, 1995.
    [30] Lohmann V. Koch JO. Bartenschlager R. Processing pathways of the hepatitis C virus proteins. Journal of Hepatology. 24(2 Suppl):11-9, 1996.
    [31] Tsukiyama-Kohara K. Iizuka N. Kohara M. Nomoto A. Internal ribosome entry site within hepatitis C virus RNA. Journal of Virology. 66(3):1476-83, 1992.
    [32] Kolykhalov AA. Mihalik K. Feinstone SM. Rice CM. Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. Journal of Virology. 74(4):2046-51, 2000.
    [33] Yasui K. Wakita T. Tsukiyama-Kohara K. Funahashi SI. Ichikawa M. Kajita T. Moradpour D. Wands JR. Kohara M. The native form and maturation process of hepatitis C virus core protein. Journal of Virology. 72(7):6048-55, 1998.
    [34] Moriya K. Yotsuyanagi H. Shintani Y. Fujie H. Ishibashi K. Matsuura Y. Miyamura T. Koike K. Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. Journal of General Virology. 78 ( Pt 7):1527-31, 1997.
    [35] Moriya K. Fujie H. Shintani Y. Yotsuyanagi H. Tsutsumi T. Ishibashi K. Matsuura Y. Kimura S. Miyamura T. Koike K. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nature Medicine. 4(9):1065-7, 1998.
    [36] Deleersnyder V. Pillez A. Wychowski C. Blight K. Xu J. Hahn YS. Rice CM. Dubuisson J. Formation of native hepatitis C virus glycoprotein complexes. Journal of Virology. 71(1):697-704, 1997.
    [37] Lin C. Lindenbach BD. Pragai BM. McCourt DW. Rice CM. Processing in the hepatitis C virus E2-NS2 region: identification of p7 and two distinct E2-specific products with different C termini. Journal of Virology. 68(8):5063-73, 1994.
    [38] Kato N. Ootsuyama Y. Ohkoshi S. Nakazawa T. Sekiya H. Hijikata M. Shimotohno K. Characterization of hypervariable regions in the putative envelope protein of hepatitis C virus. Biochemical & Biophysical Research Communications. 189(1):119-27, 1992.
    [39] Pileri P. Uematsu Y. Campagnoli S. Galli G. Falugi F. Petracca R. Weiner AJ. Houghton M. Rosa D. Grandi G. Abrignani S. Binding of hepatitis C virus to CD81. Science. 282(5390):938-41, 1998.
    [40] Taylor DR. Shi ST. Romano PR. Barber GN. Lai MM. Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science. 285(5424):107-10, 1999.
    [41] Pieroni L. Santolini E. Fipaldini C. Pacini L. Migliaccio G. La Monica N. In vitro study of the NS2-3 protease of hepatitis C virus. Journal of Virology. 71(9):6373-80, 1997.
    [42] Shimizu Y. Yamaji K. Masuho Y. Yokota T. Inoue H. Sudo K. Satoh S. Shimotohno K. Identification of the sequence on NS4A required for enhanced cleavage of the NS5A/5B site by hepatitis C virus NS3 protease. Journal of Virology. 70(1):127-32, 1996.
    [43] Love RA. Parge HE. Wickersham JA. Hostomsky Z. Habuka N. Moomaw EW. Adachi T. Hostomska Z. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell. 87(2):331-42, 1996.
    [44] Kim JL. Morgenstern KA. Lin C. Fox T. Dwyer MD. Landro JA. Chambers SP. Markland W. Lepre CA. O'Malley ET. Harbeson SL. Rice CM. Murcko MA. Caron PR. Thomson JA. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell. 87(2):343-55, 1996.
    [45] Tai CL. Chi WK. Chen DS. Hwang LH. The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). Journal of Virology. 70(12):8477-84, 1996.
    [46] Yao N. Hesson T. Cable M. Hong Z. Kwong AD. Le HV. Weber PC. Structure of the hepatitis C virus RNA helicase domain. Nature Structural Biology. 4(6):463-7, 1997.
    [47] Asabe SI. Tanji Y. Satoh S. Kaneko T. Kimura K. Shimotohno K. The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. Journal of Virology. 71(1):790-6, 1997.
    [48] Tanji Y. Kaneko T. Satoh S. Shimotohno K. Phosphorylation of hepatitis C virus-encoded nonstructural protein NS5A. Journal of Virology. 69(7):3980-6, 1995.
    [49] Gale M Jr. Blakely CM. Kwieciszewski B. Tan SL. Dossett M. Tang NM. Korth MJ. Polyak SJ. Gretch DR. Katze MG. Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Molecular & Cellular Biology. 18(9):5208-18, 1998.
    [50] Ishii K. Tanaka Y. Yap CC. Aizaki H. Matsuura Y. Miyamura T. Expression of hepatitis C virus NS5B protein: characterization of its RNA polymerase activity and RNA binding. Hepatology. 29(4):1227-35, 1999.
    [51] Farci P. Purcell RH. Clinical significance of hepatitis C virus genotypes and quasispecies. Seminars in Liver Disease. 20(1):103-26, 2000.
    [52] Honda M. Kaneko S. Sakai A. Unoura M. Murakami S. Kobayashi K. Degree of diversity of hepatitis C virus quasispecies and progression of liver disease. Hepatology. 20(5):1144-51, 1994.
    [53] Moribe T, Hayashi N, Kanazawa Y, Mita E, Fusamoto H, Negi M, Kaneshige T, Igimi H, Kamada T, Uchida K. Hepatitis C viral complexity detected by single-strand conformation polymorphism and response to interferon therapy. Gastroenterology. 108(3):789-95, 1995.
    [54] Santolini E. Pacini L. Fipaldini C. Migliaccio G. Monica N. The NS2 protein of hepatitis C virus is a transmembrane polypeptide. Journal of Virology. 69(12):7461-71, 1995.
    [55] Liu Q, Bhat RA, Prince AM, Zhang P. The hepatitis C virus NS2 protein generated by NS2-3 autocleavage is required for NS5A phosphorylation. Biochem Biophys Res Commun. 254(3):572-7, 1999.
    [56] Reed KE, Gorbalenya AE, Rice CM. The NS5A/NS5 proteins of viruses from three genera of the family flaviviridae are phosphorylated by associated serine/threonine kinases. J Virol. 72(7):6199-206, 1998.
    [57] Kurian KM. Watson CJ. Wyllie AH. DNA chip technology. Journal of Pathology. 187(3):267-71, 1999.
    [58] McGall G. Labadie J. Brock P. Wallraff G. Nguyen T. Hinsberg W. Light-directed synthesis of high-density oligonucleotide arrays using semiconductor photoresists. Proceedings of the National Academy of Sciences of the United States of America. 93(24):13555-60, 1996.
    [59] Schena M. Shalon D. Davis RW. Brown PO. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 270(5235):467-70, 1995.
    [60] Chee M. Yang R. Hubbell E. Berno A. Huang XC. Stern D. Winkler J. Lockhart DJ. Morris MS. Fodor SP. Accessing genetic information with high-density DNA arrays. Science. 274(5287):610-4, 1996.
    [61] Maecker HT. Todd SC. Levy S. The tetraspanin superfamily: molecular facilitators. FASEB Journal. 11(6):428-42, 1997.
    [62] Boucheix C. Rubinstein E. Tetraspanins. Cellular & Molecular Life Sciences. 58(9):1189-205, 2001.
    [63] Kopczynski CC, Davis GW, Goodman CS. A neural tetraspanin, encoded by late bloomer, that facilitates synapse formation. Science. 271(5257):1867-70, 1996.
    [64] Shi W. Fan H. Shum L. Derynck R. The tetraspanin CD9 associates with transmembrane TGF-alpha and regulates TGF-alpha-induced EGF receptor activation and cell proliferation. Journal of Cell Biology. 148(3):591-602, 2000.
    [65] Longo N. Yanez-Mo M. Mittelbrunn M. de la Rosa G. Munoz ML. Sanchez-Madrid F. Sanchez-Mateos P. Regulatory role of tetraspanin CD9 in tumor-endothelial cell interaction during transendothelial invasion of melanoma cells. Blood. 98(13):3717-26, 2001.
    [66] 林素數. 利用桿狀病毒系統及大腸桿菌系統表現c型肝炎病毒的NS2-3蛋白酵素與其特性分析. 國立成功大學生物化學研究所碩士論文, 1998.

    下載圖示 校內:2003-07-11公開
    校外:2003-07-11公開
    QR CODE