| 研究生: |
劉采瑜 Liu, Tsai-Yu |
|---|---|
| 論文名稱: |
運用調整蘭德指數及興趣點來解讀臺北市公共自行車旅次群聚所代表的空間意涵 Interpreting the Spatial Implications of Taipei City's Public Bicycle Trip Clusters Using Adjusted Rand Index and Points of Interest |
| 指導教授: |
李子璋
Lee, Tzu-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 公共自行車 、大數據 、資料探勘 、社會網絡分析 、興趣點POI 、調整蘭德指數 、次分群 、合併集群 、新都市主義 |
| 外文關鍵詞: | Public Bicycle System (PBS), Big data , Data Mining, Social Network analysis, POI, Adjusted Rand Index, Sub-clustering, Cluster Merging |
| 相關次數: | 點閱:45 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著環保意識的提升和智慧城市概念的普及,公共自行車系統(Public Bicycle System, PBS)成為都市交通的重要組成部分。然而,過往對於公共自行車系統與都市興趣點兩者空間分群區塊的意涵多以文字敘述和主觀經驗為主,缺乏客觀的量化支持。這限制了對於都市空間結構和活動模式的深入理解,進而影響科學的都市規劃與管理。
本研究旨在探討公共自行車旅次與都市興趣點(POI)之間的空間分群相似程度,並以量化的方法揭示這些分群背後的實質空間意涵。透過資料探勘技術探索公共自行車旅次數據,結合具象指標興趣點數據進行深度挖掘,以及運用社會網絡分析、社群偵測及集群分析等方法進行空間分群。最後以調整蘭德指數(Adjusted Rand Index, ARI)量化公共自行車旅次與興趣點分群的相似度,揭示兩者之間的空間關係,來分析揭示空間分群背後的意涵。另外,針對不同分群數的圖層,本研究採用了合併集群(Cluster Merging)方法,透過調整分群數以提高調整蘭德指數的精確性,減少分群邊界的模糊性,進而揭示興趣點與公共自行車使用模式之間更清晰的關係。
同時,本研究為深入探討臺北市不同區域尺度下的空間分佈模式,範圍將涵蓋全市都會區的城市尺度和15分鐘鄰里生活圈尺度進行分析,此分析尺度類同於《新都市主義憲章》(Charter of the New Urbanism)中提到的概念。本研究鄰里生活圈選定市區外圍的內湖區和市中心的大安區,用以揭示群內互動上的差異。 研究結果數據指出:大安區作為市中心,興趣點如銀行、車站、健身房等的ARI數值突出,反映出該區作為交通樞紐與金融文化設施密集的角色;相對地,內湖區為新興商業區與住宅區,健身房、學校和咖啡廳等的ARI數值較突出,顯示其區域重視健康與便利生活。以上這些發現有助於理解不同區域的都市空間結構與活動特性,對未來的都市規劃和交通管理提供了重要參考。
本研究最終透過量化分析公共自行車旅次與都市興趣點兩者間的分群差異,來揭示背後的空間意涵,填補過去研究中缺乏量化支持的缺口。研究結果不僅可幫助政府與都市規劃者準確地理解公共自行車系統與都市活動空間關係,制定更有效的規劃及策略,推動智慧城市建設,也為後續的都市空間結構與活動模式研究提供了科學的依據,具重要的學術與實踐價值。
本研究的突破點分成三個部分,首先,透過調整蘭德指數量化空間關係,提供了客觀的數據支持,克服過去主觀經驗的局限性;第二,結合動態的公共自行車旅次資料以及具象的興趣點指標解釋公共自行車分布的空間意涵,同時以不同尺度來觀察驗證,提供了對於都市活動模式的不同視角;最後測試了調整蘭德指數進行空間分群分析及合併集群方法的適切性,提升了研究的精確性與可靠性,為後續的都市規劃提供了更具科學性的依據。
With growing environmental awareness and the rise of smart cities, Public Bicycle Systems (PBS) have become integral to urban transport. However, prior studies on the spatial clustering of PBS and urban Points of Interest (POI) have largely relied on qualitative descriptions, lacking quantitative analysis, which limits the understanding of urban spatial structures and activity patterns.
This study quantifies the spatial clustering similarity between PBS trips and POIs in Taipei, employing data mining, social network analysis, and cluster analysis. The Adjusted Rand Index (ARI) is used to measure the similarity between clusters, offering insights into their spatial relationships. The study also utilizes Cluster Merging to refine cluster accuracy, reducing boundary ambiguities.
The research examines spatial patterns at both the citywide scale and the 15-minute neighborhood level, comparing the city center (Daan District) and a peripheral area (Neihu District). Findings reveal distinct POI clustering characteristics, highlighting the differing urban structures and activity patterns.
This study addresses the gap in quantitative analysis within previous research, providing a scientific foundation for urban planning and smart city strategies. Key contributions include the objective quantification of spatial relationships, the integration of dynamic PBS and POI data, and the validation of clustering methodologies, enhancing the precision and reliability of urban spatial analysis.
Anas, A., Arnott, R., & Small, K. A. (1998). Urban spatial structure. Journal of economic literature, 36(3), 1426-1464.
Bao, J., Xu, C., Liu, P., & Wang, W. (2017). Exploring bikesharing travel patterns and trip purposes using smart card data and online point of interests. Networks and Spatial Economics, 17, 1231-1253.
Barabási, A.-L., Albert, R., & Jeong, H. (2000). Scale-free characteristics of random networks: the topology of the world-wide web. Physica A: statistical mechanics and its applications, 281(1-4), 69-77.
Batty, M. (2013). The new science of cities. MIT press.
Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), P10008.
Borgnat, P., Abry, P., Flandrin, P., Robardet, C., Rouquier, J.-B., & Fleury, E. (2011). Shared bicycles in a city: A signal processing and data analysis perspective. Advances in Complex Systems, 14(03), 415-438.
Buck, D., & Buehler, R. (2012). Bike lanes and other determinants of capital bikeshare trips. 91st Transportation research board annual meeting, Washington, DC.
Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical review E, 70(6), 066111.
Corcoran, J., Li, T., Rohde, D., Charles-Edwards, E., & Mateo-Babiano, D. (2014). Spatio-temporal patterns of a Public Bicycle Sharing Program: the effect of weather and calendar events. Journal of Transport Geography, 41, 292-305.
DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. Journal of public transportation, 12(4), 41-56.
DeMaio, P. J. (2003). Smart bikes: Public transportation for the 21st century. Transportation Quarterly, 57(1), 9-11.
Ducruet, C., & Beauguitte, L. (2014). Spatial science and network science: review and outcomes of a complex relationship. Networks and Spatial Economics, 14(3-4), 297-316.
Duran-Rodas, D., Chaniotakis, E., & Antoniou, C. (2019). Built environment factors affecting bike sharing ridership: data-driven approach for multiple cities. Transportation research record, 2673(12), 55-68.
Girvan, M., & Newman, M. E. (2002). Community structure in social and biological networks. Proceedings of the national academy of sciences, 99(12), 7821-7826.
Hampshire, R. C., & Marla, L. (2012). An analysis of bike sharing usage: Explaining trip generation and attraction from observed demand. 91st Annual meeting of the transportation research board, Washington, DC.
He, Y., Song, Z., Liu, Z., & Sze, N. (2019). Factors influencing electric bike share ridership: Analysis of Park City, Utah. Transportation research record, 2673(5), 12-22.
Hennig, C., Meila, M., Murtagh, F., & Rocci, R. (2015). Handbook of cluster analysis. CRC press.
Huang, W., Song, G., Hong, H., & Xie, K. (2014). Deep architecture for traffic flow prediction: Deep belief networks with multitask learning. IEEE Transactions on Intelligent Transportation Systems, 15(5), 2191-2201.
Hubert, L., & Arabie, P. (1985). Comparing partitions. Journal of classification, 2, 193-218.
Jain, A. K. (2010). Data clustering: 50 years beyond K-means. Pattern recognition letters, 31(8), 651-666.
Jain, A. K., & Dubes, R. C. (1988). Algorithms for clustering data. Prentice-Hall, Inc.
Jan, P. P. (2018). Constrained construction of planar delaunay triangulations without flipping. Строительная механика инженерных конструкций и сооружений, 14(2), 154-174.
Jäppinen, S., Toivonen, T., & Salonen, M. (2013). Modelling the potential effect of shared bicycles on public transport travel times in Greater Helsinki: An open data approach. Applied Geography, 43, 13-24. https://doi.org/https://doi.org/10.1016/j.apgeog.2013.05.010
Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
Laney, D. (2001). 3D data management: Controlling data volume, velocity and variety. META group research note, 6(70), 1.
Lee, K. H., Won, D. H., & Ko, E. J. (2015). The multiple impacts of the neighbourhood environment on the use of public bicycles by residents: an empirical study of Changwon in Korea. International Journal of Urban Sciences, 19(2), 224-237.
Liu, J., Li, Q., Qu, M., Chen, W., Yang, J., Xiong, H., Zhong, H., & Fu, Y. (2015). Station site optimization in bike sharing systems. 2015 IEEE International Conference on Data Mining, Atlantic City, NJ, USA.
Liu, L., Hou, A., Biderman, A., Ratti, C., & Chen, J. (2009). Understanding individual and collective mobility patterns from smart card records: A case study in Shenzhen. 2009 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA.
Long, Y., Shen, Z., Long, Y., & Shen, Z. (2015). Discovering functional zones using bus smart card data and points of interest in Beijing. Geospatial analysis to support urban planning in Beijing, 193-217.
Lynch, K. (1964). The image of the city. MIT press.
MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, Oakland, CA, USA.
Meilă, M. (2007). Comparing clusterings—an information based distance. Journal of multivariate analysis, 98(5), 873-895.
Midgley, P. (2011). Bicycle-sharing schemes: enhancing sustainable mobility in urban areas. United Nations, Department of Economic and Social Affairs, 8, 1-12.
Milligan, G. W., & Cooper, M. C. (1986). A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate behavioral research, 21(4), 441-458.
Newman, M. E., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113.
Park, J. Y., Kim, D.-J., & Lim, Y. (2008). Use of smart card data to define public transit use in Seoul, South Korea. Transportation Research Record, 2063(1), 3-9.
Parkes, S. D., Marsden, G., Shaheen, S. A., & Cohen, A. P. (2013). Understanding the diffusion of public bikesharing systems: evidence from Europe and North America. Journal of transport geography, 31, 94-103.
Pfitzner, D., Leibbrandt, R., & Powers, D. (2009). Characterization and evaluation of similarity measures for pairs of clusterings. Knowledge and Information Systems, 19, 361-394.
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal of the American Statistical association, 66(336), 846-850.
Ratti, C., Frenchman, D., Pulselli, R. M., & Williams, S. (2006). Mobile landscapes: using location data from cell phones for urban analysis. Environment and planning B: Planning and design, 33(5), 727-748.
Ratti, C., Sobolevsky, S., Calabrese, F., Andris, C., Reades, J., Martino, M., Claxton, R., & Strogatz, S. H. (2010). Redrawing the map of Great Britain from a network of human interactions. PloS one, 5(12), e14248.
Rezaei, M., & Fränti, P. (2016). Set matching measures for external cluster validity. IEEE transactions on knowledge and data engineering, 28(8), 2173-2186.
Rinzivillo, S., Mainardi, S., Pezzoni, F., Coscia, M., Pedreschi, D., & Giannotti, F. (2012). Discovering the geographical borders of human mobility. KI-Künstliche Intelligenz, 26, 253-260.
Rodrigue, J.-P. (2020). The geography of transport systems. Routledge.
Romanillos, G., Zaltz Austwick, M., Ettema, D., & De Kruijf, J. (2016). Big data and cycling. Transport Reviews, 36(1), 114-133.
Santos, J. M., & Embrechts, M. (2009). On the use of the adjusted rand index as a metric for evaluating supervised classification. International conference on artificial neural networks, Washington, D.C.
Scott, J. (2012). What is social network analysis? Bloomsbury Academic.
Shaheen, S. A., Guzman, S., & Zhang, H. (2010). Bikesharing in Europe, the Americas, and Asia: past, present, and future. Transportation research record, 2143(1), 159-167.
Sobolevsky, S., Szell, M., Campari, R., Couronné, T., Smoreda, Z., & Ratti, C. (2013). Delineating geographical regions with networks of human interactions in an extensive set of countries. PloS one, 8(12), e81707.
Spark, W. (2023). 臺北市2023年的天氣歷史. Retrieved 2023/9/2 from https://tw.weatherspark.com/h/y/137170/2023/%E5%8F%B0%E5%8C%97%E5%B8%82%E3%80%81%E5%8F%B0%E7%81%A32023%E5%B9%B4%E6%AD%B7%E5%8F%B2%E5%A4%A9%E6%B0%A3
Sun, H., Forsythe, W., & Waters, N. (2007). Modeling urban land use change and urban sprawl: Calgary, Alberta, Canada. Networks and spatial economics, 7, 353-376.
The Congress for the New Urbanism. (1996). The Charter of the New Urbanism. Retrieved August 22 from https://www.cnu.org/who-we-are/charter-new-urbanism
Thiemann, C., Theis, F., Grady, D., Brune, R., & Brockmann, D. (2010). The structure of borders in a small world. PloS one, 5(11), e15422.
Vinh, N. X., Epps, J., & Bailey, J. (2009). Information theoretic measures for clusterings comparison: is a correction for chance necessary? Proceedings of the 26th annual international conference on machine learning, Montreal, Quebec, Canada.
Warrens, M. J., & van der Hoef, H. (2020). Understanding the rand index. In Advanced Studies in Classification and Data Science (pp. 301-313). Springer. https://doi.org/https://doi.org/10.1007/978-981-15-3311-2_24
Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. nature, 393(6684), 440-442.
Yuan, J., Zheng, Y., & Xie, X. (2012, August 2012). Discovering regions of different functions in a city using human mobility and POIs. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, Beijing, China.
Zhang, X., Shen, Y., & Zhao, J. (2021). The mobility pattern of dockless bike sharing: A four-month study in Singapore. Transportation Research Part D: Transport and Environment, 98, 102961.
Zhang, Y., & Mi, Z. (2018). Environmental benefits of bike sharing: A big data-based analysis. Applied energy, 220, 296-301.
Zheng, Y. (2015). Trajectory data mining: an overview. ACM Transactions on Intelligent Systems and Technology (TIST), 6(3), 1-41.
Zhong, C., Arisona, S. M., Huang, X., Batty, M., & Schmitt, G. (2014). Detecting the dynamics of urban structure through spatial network analysis. International Journal of Geographical Information Science, 28(11), 2178-2199.
孔令傑. (2021a). 以社會網絡方法探討公共自行車與捷運轉乘所呈現之 TOD 空間特性
孔令傑. (2021b). 以社會網絡方法探討公共自行車與捷運轉乘所呈現之TOD空間特性. 49(2).
王少谷. (2015). 公共自行車租用與都市土地使用型態關聯性之探討
王博群. (2021). 以機率模型探討公共自行車轉乘捷運的騎乘距離與都市環境之關係
白詩滎, & Pai, S. Y. (2014). 臺北公共自行車使用行為特性分析與友善環境建構之研究
交通部運輸研究所. (2020). 2020年版運輸政策白皮書: 綠運輸. 交通部.
江穎慧, 莊喻婷, & 張金鶚. (2017). 臺北市公共自行車場站對鄰近住宅價格之影響 [The impact of public bike station on residential housing price in taipei city]. 運輸計劃季刊, 46(4), 399-428.
李家儂. (2006). 交通運輸與土地使用整合規劃之演變~ 大眾運輸導向發展的都市發展模式. 土地問題研究季刊, 5(3), 70-83.
李家儂, & 賴宗裕. (2009). 交通運輸與土地使用連結下的都市模式演變-全球36個主要城市比較分析 [Transport and Land Use Relationship Defining Urban Form in Historical Context: A Comparative Analysis of 36 Global Cities]. 都市與計劃, 36(1), 25-49. https://doi.org/10.6128/cp.36.1.25
李家儂, & 謝翊楷. (2015). 以空間型構法則及步行導向理念檢視TOD區內土地使用配置的合理性 [Using Space Syntax and Pedestrian-Oriented Design Concepts to Examine the Rationality of the Land Use Configuration of TOD Districts]. 運輸計劃季刊, 44(1), 1-24.
汪小帆, 李翔, & 陈关荣. (2006). 复杂网络理论及其应用. 清华大学出版社有限公司.
林浩瑋. (2016). 悠遊卡大數據應用於大眾運輸乘客旅運型態之研究.
陈红, 陈恒瑞, 史转转, 张敏, & 刘至真. (2021). 公共自行车使用时空特性挖掘及租还需求预测. 交通运输系统工程与信息, 21(2), 238.
洪承佑. (2015). 考量公共自行車系統之公共運輸旅次規劃演算法之研究.
倪如霖. (2016). 公共自行車租借量之影響因素分析-地理加權迴歸和函數資料分析方法之應用 (Publication Number 2016年) 國立交通大學]. AiritiLibrary.
夏明達. (2018). 自行車及大眾捷運系統整合基礎設施之評估研究 (Publication Number 2018年) 國立臺灣大學]. AiritiLibrary.
陳靖昇. (2016). 考量公共自行車站上需求之動態自行車調度策略 (Publication Number 2016年) 國立臺灣大學]. AiritiLibrary.
開奕臻. (2022). 探討天氣狀況對公共自行車使用的影響
解鴻年, & 張馨文. (2011). 新竹科學城民眾使用公共自行車意願分析. Journal of architecture, 12(3), 237-263.
維基百科. (2023a). K-means clustering. Retrieved Online; accessed 2023,09,06 from https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=1226686614
維基百科. (2023b). 網路理論--- 維基百科, 自由的百科全書. . Retrieved Online; accessed 2023,07,05 from https://zh.wikipedia.org/w/index.php?title=%E7%BD%91%E7%BB%9C%E7%90%86%E8%AE%BA&oldid=77813710
維基百科. (2023c). 臺北市. Wikipedia. Retrieved 2023/8/28 from https://zh.wikipedia.org/w/index.php?title=%E8%87%BA%E5%8C%97%E5%B8%82&oldid=82865327
臺北市政府主計處. (2023). 臺北市政統計週報(第1230號). 臺北市政府主計處 Retrieved from https://www-ws.gov.taipei/001/Upload/367/relfile/46908/8974682/29644daa-32a3-4f1b-b100-33ba280aa47d.pdf
劉鴻錡. (2017). 建成環境對公共自行車使用時空型態之影響 (Publication Number 2017年) 國立臺灣大學]. AiritiLibrary.
鍾凱如. (2022). 臺北市公共自行車使用特性與空間分佈型態之趨勢變化分析 (Publication Number 2022年) 國立政治大學]. AiritiLibrary.
顏郁慈. (2022). 探討多元⼤ 數據下的都市空間結構-以臺北市為例
羅先豪, 孔令傑, 王博群, & 李子璋. (2022). 公共自行車轉乘捷運架構下之大眾運輸導向發展概念調整 [Adjustments of Transit-Oriented Development Concepts under Popular Transport Mode Transfer between the Public Bicycle Sharing System and the Mass Rapid Transit System]. 都市與計劃, 49(2), 181-198. https://doi.org/10.6128/cp.202206_49(2).0003
蘇翊筑. (2022). 公共自行車使用型態與都市活動的空間結構比較