簡易檢索 / 詳目顯示

研究生: 蔡和生
Tsai, Ho-Sheng
論文名稱: 鹼活化還原碴砂漿之工程與環境特性研究
Engineering and Environmental Properties of Alkali Activated Ladle Slag Mortar
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 139
中文關鍵詞: 電弧爐還原碴鹼活化還原碴砂漿健性工程與環境特性
外文關鍵詞: EAF ladle slag, alkali activated mortar, soundness, engineering and environmental properties
相關次數: 點閱:88下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電弧爐還原碴 (EAF ladle slag),化學組成富含Ca、Si元素,但因含f-MgO與f-CaO,作為工程材料應用時,有健性不穩定之虞。本研究應用鹼活化程序提供一高化學能,期能增加還原碴之反應性以克服健性不穩定之問題,並探討鹼活化還原碴砂漿 (AALSG) 作為工程材料之可行性。首先利用熱壓膨脹試驗判別還原碴之健性,並比較卜作嵐及鹼活化活性指數,評估其資源化之可行性,最後探討AALSG之工程與環境特性並以波特蘭I型水泥砂漿 (OPC) 為比較基準,評估其作為功能性材料之潛力及其環境相容性。
    研究結果顯示,還原碴不適合作為卜作嵐摻料,由熱壓膨脹試驗前後之微觀分析,發現係因還原碴中之f-CaO及f-MgO轉化為Ca(OH)2及Mg(OH)2會造成體積之膨脹,長度變化量遠大於0.8 %,顯示還原碴具健性不穩定之問題。研究證實鹼活化還原碴,於反應初期便能將f-CaO及f-MgO轉化為Ca(OH)2、Mg(OH)2及鈣(鎂)矽水化物,經熱壓膨脹試驗,其長度變化量遠小於0.8 %,且活性指數及鹼活化指數皆超過75 %,顯示AALSG具作為工程材料之可行性。再者,AALSG具有較小之平均孔徑及孔隙體積,且水化產物皆以鈣矽水化物及矽鋁酸鹽水化物為主,使AALSG之抗壓強度及彈性模數皆優於OPC (皆約為1.1倍),具較佳之力學特性,可作為替代OPC之工程材料。且環境特性上,AALSG具有較佳之耐久性,經105天硫酸鹽養治,長度變化量小於0.01 %,相對而言,OPC較易受硫酸鹽之侵蝕,而造成體積膨脹,長度變化量超過0.03 %;由長期溶出試驗得知,AALSG同樣有較少之溶出量,具良好之環境相容性;其中因矽鋁酸鹽水化物之生成,AALSG亦具有較佳之耐熱特性,相較OPC經550 °C熱處理後即開裂,AALSG還能有90 %以上之殘留強度,且經800 °C熱處理後亦能保有約14 % (4 MPa) 之殘留強度。綜合而言,鹼活化還原碴砂漿 (AALSG) 具健性穩定,且力學特性、耐熱特性、耐久性及環境相容性皆優於波特蘭I型水泥砂漿 (OPC),係為具發展潛力之綠色工程材料。

    This study investigated the engineering and environmental properties of alkali activated ladle slag mortar (AALSG). Ladle slag is unsuitable to be the pozzolanic material because the soundness of ladle slag can not meet the specification. However, alkali activated technology can transform f-Cao and f-MgO of ladle slag into the Ca(OH)2, Mg(OH)2 or calcium (magnesite) silicate hydrate in the beginning of hydration reaction cause the soundness of ladle slag meet the specification. Furthermore, both the activity index and alkali activated index of AALSG mortar are more than 75 % that means AALSG mortar is available to be the cementitious material. In the results of engineering and environmental properties, AALSG mortar with hydration products mainly composed with calcium silicate hydrate and calcium aluminum silicate hydrate that also displays smaller pore size and pore volume than OPC mortar. Therefore, both compressive strength and modulus elasticity of AALSG mortar are higher than OPC mortar, showing better mechanical properties. Besides, AALSG mortar shows better chemical durability and environmental compatibility than OPC mortar. Length variation of AALSG mortar is less than 0.01 % after curing 105 days in sulfate solution while OPC mortar easily eroded by sulfate, length variation is more than 0.03 %. From results of tank test, AALSG mortar shows lower Ca dissolution and the all regulated heavy metal leaching levels are not detected. Furthermore, better thermal resistance performance represent in AALSG mortar with calcium aluminum silicate hydrate. Through 550 °C heat treatment, OPC mortar cracked without residual strength, but AALSG mortar still keep more than 90 % residual strength. Even through 800 °C heat treatment, there is only 14 % residual strength (about 4 MPa) of AALSG mortar, but that is considerably high enough to prevent collapse of structure of specimen.

    目錄 中文摘要 I 英文摘要 III 誌謝 VI 目錄 VIII 表目錄 XII 圖目錄 XIV 第一章 前 言 1 1-1 研究動機與目的 1 1-2研究內容 2 第二章 文獻回顧 4 2-1 電弧爐還原碴之特性與資源化概況 4 2-1-1還原碴之產出及特性 4 2-1-2還原碴之資源化應用現況與困境 8 2-2 鹼活化反應程序 16 2-2-1鹼活化混凝土之反應機制 16 2-2-2鹼活化爐石之水化產物 20 2-3 影響鹼活化程序之因素 22 2-3-1鹼活化劑之種類 22 2-3-2含鹼當量與鹼模數比之影響 24 2-3-3鹼活化材料之細度 25 2-4 鹼活化混凝土之特性 27 2-4-1強度 27 2-4-2熱穩定性 29 2-4-3抗化學侵蝕能力 29 2-4-4體積穩定性 31 2-4-5鹼活化程序之乾縮速凝現象 32 2-5 小結 34 第三章 研究材料、設備與方法 35 3-1 研究架構與實驗流程 35 3-2研究材料與設備分析 38 3-2-1原料與還原碴之前處理 38 3-2-2實驗試藥與設備分析 38 3-3實驗設計與分析方法 48 3-3-1基本特性 49 3-3-2還原碴之卜作嵐及鹼活化特性 51 3-3-3鹼活化還原碴砂漿之工程與環境特性探討 54 第四章 結果與討論 57 4-1 還原碴之基本特性 57 4-1-1物理特性 57 4-1-2化學特性 60 4-1-3還原碴細粉料之健性評估 68 4-1-4小結 74 4-2 鹼活化還原碴之卜作嵐與鹼活化活性 75 4-2-1鹼活化還原碴之健性評估 75 4-2-2鹼活化還原碴之活性指數與鹼活化指數 79 4-2-3小結 84 4-3 鹼活化還原碴砂漿之力學特性探討 86 4-3-1試體之力學特性 86 4-3-2微觀分析 90 4-3-3小結 97 4-4 鹼活化還原碴砂漿之環境特性 99 4-4-1耐熱特性 99 4-4-2耐久性試驗 114 4-4-3桶槽試驗 117 4-4-4小結 124 4-5綜合評析 126 第五章 結論與建議 130 5-1結論 130 5-2 建議 132 參考文獻 133

    Andi, A. A. (2009). Strength and durability properties of alkali activated slag and fly ash-based geopolymer concrete. A thesis for the degree of doctor of philosophy.
    Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (1999). Alkali activation of Australian slag cement. Cement and Concrete Research, 29 (1), 113-120.
    Bakharev, T., Sanjayan, J. G., and Cheng, Y. B. (2001). Resistance of alkali-activated salg concrete to alkali-aggregate reaction. Cement and Concrete Research, 31 (2), 331-334.
    Burciaga-Dı´az, O., Escalante-Garcı´a, J.I., Arellano-Aguilar, R.I., & Gorokhovsky, A. (2010). Statistical analysis of strength development as a function of various parameters on activated Metakaolin/slag cements. Journal of the American Ceramic Society, 93 (2), 541–547.
    Collins, F. and Sanjayan, J. G. (1999). Effects of ultra-fine materials on workability and strength of concrete containing alkali-activated slag as the binder. Cement and Concrete Research, 29 (3), 459-462.
    Cullity, B. D. and Stock, S. R. (2001). Elements of X-Ray Diffraction. Upper Saddle: Prentice Hall.
    Chao L., Henhu S., Longtu L. (2010). A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cement and Concrete Research, 40 (9), 1341-1349.
    Dias, W. P. S., Khoury, G. A., and Sullivan, P. J. E. (1990). Mechanical properties of hardened cement paste exposed to temperature up to 700 °C. ACI Materials Journal, 87 (2), 160-166.

    Dong, W., Scrivener, K.L., & Pratt, P.L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24 (6), 1033-104.
    Dweck, J., Buchler, P. M., Coelho, A. C. V., & Cartledge, F. K. (2000). Hydration of Portland cement blended with calcium carbonate. Thermochimica Acta, 346, 105-113.
    Duxson, P. A., Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, J.S.J. van Deventer. (2007). Geopolymer technology: the current state of the art. J. Mater. Sci, 42, 2917-2933.
    Duxson, P., Provis, J. L. (2008). Designing precursors for geopolymer cements. J. Am. Ceram. Soc, 91 (12), 3864-3869.
    David R., Tomas K., Jan R., Rostislav M., Pavel N., Petr B., Jaroslav K., Pavel H. (2015). Effect of thermal treatment on reactivity and mechanical properties of alkali activated shale–slag binder. Journal Construction and Building Materials, 83 (2015), 26-33.
    Escalante-Garcia, J. I., Fuentes, A. F., Gorokhovsky, A., Fraire-Luna, P. E., & Mendoza-Suarez, G. (2003). Hydration products and reactivity of blast- furnace slag activated by various alkalis. Journal of the American Ceramic Society, 86 (12), 2148–2153.
    Fernández-Jiménez, A., Palomo, J. G., & Puertas, F. (1999). Alkali-activated slag mortars mechanical strength behaviour. Cement and Concrete Research, 29, 1313-1321.
    Fernández-Jiménez, A., Puertas, F., Sobrados, I., & Sanz, J. (2003). Structure of calcium silicate hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator. Journal of the American Ceramic Society, ProQuest Science Journals, 86 (8), 1389-1394.

    Glukhovsky, V. D., Rotovskaya, G. S., & Rumyna, G. V. (1980). High strength slag-alkali cement. Paper presented at the 7th International Congress on the Chemistry of Cements.
    Khoury, G. A. (2002). Compressive strength of concrete at high temperatures: A reassessment. Magazine of Concrete Research, 44, 291-309
    Krizana, D., & Zivanovic, B. (2002). Effects of dosage and modulus of water glass on early hydration of alkali–slag cements. Cement and Concrete Research, 32, 1181-1188.
    Lecomte, I., Henrist, C., Liégeois, M. F., Maseri, R. A., and Cloots., R. (2006). (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc, 26, 3789-3797.
    Mohd, N. Q., & Somnath, G. (2013). Effect of alkali content on strength and microstructure of GGBFS paste. Double Blind Peer Reviewed International Research Journal, 13 (1), 2249-4596.
    Natali Murri, A., Rickard W.D.A., Bignozzi, M.C., and Van Riessen, A. (2013). High temperature behaviour of ambient cured alkali-activated materials based on ladle slag. Cement and Concrete Research, 43 (2013), 51-61.
    Palomo, A., Grutzek, M.W., and Blanco, M.T. (1999). Alkali-activated fly ashes: a cement for thefuture. Cement and Concrete Research, 291323-1329.
    Provis, J., and Van Deventer, J. (2009). Geopolymers: Structure, processing, properties and industrial applications. Woodhead Publishing Limited, UK.

    Polettini, A., Pomi, R., and Fortuna, E. (2009). Chemical activation in view of MSWI bottom ash recycling in cement-based systems. Journal of Hazardous Materials, 162, 1292-1299.
    Rajaokarivony-Andriambololona, Z., Ballif, P., Thomassin, J. H., & Touray, J. C. (1990). Experimental hydration of two synthetic glassy blast furnace slags in water and alkaline solutions at 40 _C: Structure, composition and origin of the hydrated layer. Journal of Materials Science, 25 (5), 2399-2410.
    Robert J. T., and Sulapha P. (2015). Alkali-activated concrete: Engineering properties and stress-strain behavior. Construction and Building Materials, 93, 49-56.
    Shi, C., and Day, R. L. (1995). A calorimetric study of early hydration of alkali slag cement. Cement and Concrete Research, 25 (6), 1333-1346.
    Shi, C. (1996). Strength, pore structure and permeability of alkali-activated slag mortars. Cement and Concrete Research, 26 (12), 1789-1799.
    Sujin S., and Hamlin M. J. (2009). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 29 (2), 159-170.
    Serdar A., and Bulent B. (2012). High temperature resistance of Alkali-activated slag- and Portland cement-based reactive powder concrete. ACI Materials Journal, 109 (4)
    Van-Jaarsveld, J. G. S., & Van-Deventer, J. S. J. (1999). Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Industrial & Engineering Chemistry Research, 38, 3932-3941.

    Wang, S. D., Scrivener, K. L., and Pratt, P. L. (1994). Factors affecting the strength of alkali-activated slag. Cement and Concrete Research, 24 (6), 1033-1043.
    Wang, S. D., & Scrivener, K. L. (1995). Hydration products of alkali activated slag cement. Cement and Concrete Research, 25 (3), 561-571.
    Wang S. D., Pu X. C., Scrivener K. L., and Pratt P. L. (1995). Alkali-activated cement and concrete: A review of properties and problems. Advances in Cement Research, 7(27), 93-102.
    Wang, W. C., Wang, H. Y., and Lo, M. H. (2014). The engineering properties of alkali-activated slag pastes exposed to high temperatures. Construction and Building Materials, 68, 409–415.
    Yuan, X. H., Chen, W., Lu, Z. A., & Chen, H. (2014). Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Construction and Building Materials, 66, 422–428.
    王俊文,混凝土受高溫而強度折減之分析,國立雲林科技大學營建工程所,碩士論文,2000。
    江奇成,電弧爐煉鋼還原渣與鑄件廢料摻用於混凝土再生材之模式研究,國立台灣科技大學營建工程學系,博士論文,2005。
    江慶陞,爐石的資源化,技術與訓練6卷9期,1981。
    吳明富,還原碴-高爐石作為混合膠結材之應用,國立中央大學土木工程研究所,碩士論文,2013。
    李宜桃,鹼活化還原碴漿體收縮及抑制方法之研究,國立中央大學土木工程研究所碩士學位論文,2003。
    周志遠,高溫對玻璃纖維混凝土影響之研究,中原大學土木工程學系,碩士論文,2004。
    林岳凱,鹼活化轉爐石產製工程材料之研究,國立成功大學環境工程研究所,碩士論文,2015。
    林庭亦,電弧爐還原渣再生應用於高性能混凝土性質之研究,國立台灣科技大學營建工程學系,碩士論文,2003。
    林智賢,火災學,華香園出版社,2010。
    傅國柱,還原渣取代部份水泥之研究,國立中央大學土木工程研究所,碩士論文,2002。
    彭信源,焚化底渣濕篩污泥產製功能性建材之研究,國立成功大學環境工程研究所,碩士論文,2014。
    黃兆龍,高爐熟料的性質及在混凝土工程上的應用,營建世界,第三十二期,第55~59頁,1984。
    黃慶慶,鹼活化電弧爐還原碴製作混凝土可行性研究,國立中央大學土木工程研究所碩士學位論文,2008。
    楊貫一,爐石資源化-中鋼公司爐石應用的過去與未來,技術與訓練,第17卷,第一期,第31~46頁,1992。
    經濟部工業局,電弧爐還原渣資源化應用技術手冊,2001。
    葉為忠,鹼活化爐石混凝土配比設計及其影響之研究(II),行政院國家科學委員會專題研究計劃成果報告,2004。
    廖國裕,混凝土中骨材與水泥漿界面處過渡區性質與耐久性之研究,國立交通大學土木工程研究所,博士論文,2003。
    蒲心誠,楊長輝,高強鹼爐渣(JK)流態混凝土研究,混凝土,第18~30頁,1994。
    劉國忠,煉鋼爐渣之資源化技術與未來推展方向,環保月刊,第四期十月號,第117~118頁,2001。
    蕭遠智,鹼活化電弧爐還原碴之水化反應特性,國立中央大學土木工程研究所碩士學位論文,2002。
    蘇茂豐,陳立,電弧爐煉鋼爐渣之資源化現況與未來展望,工業污染防治,第93 期,第27~51 頁,2005。
    蘇鈺荃,下電弧爐渣重金屬溶出特性及作為級配材料之可行性研究,國立成功大學環境工程研究所,碩士論文,2011。
    蘇榮章,鹼活化爐石粉砂漿火害研究,國立雲林科技大學營建工程學系,碩士論文,2003。

    無法下載圖示 校內:2021-06-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE