| 研究生: |
洪啟展 Hung, Chi-Chan |
|---|---|
| 論文名稱: |
葉片微米結構與複印技術之疏水性研究 A Hydrophobic Study of Microtextures on Leaves and the Replicate Technology |
| 指導教授: |
周榮華
Chou, Jung-Hwa |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 二甲基矽氧烷 、接觸角 、疏水 、葉片表面結構 |
| 外文關鍵詞: | PDMS, contact angle, hydrophobic, surface structure |
| 相關次數: | 點閱:170 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究討論自然界植物葉片表面結構與其疏水特性的關係,並使用物理方法將葉子表面之微結構,複製到聚二甲基矽氧烷(PDMS,Poly dimethyl-siloxane)上,得到一表面疏水膜,比較與原葉片之差異並探討其結構表面與疏水特性的關係。實驗結果顯示疏水性較佳的葉片分別為蓮葉正面的突點狀結構及黃槿背面、芙蓉和艾草的立體結構,其接觸角分別為150°、135°、145°和130°。在一次膜的接觸角量測上並無明顯的疏水性變化。疏水材質的PDMS二次膜再配合有明顯結構的葉片表面,讓其疏水表面更加疏水,其接觸角到達150°。
This research studies the relationship between the surface structure of natural leaves and their hydrophobic characteristics, and uses a physical method to replicate the microtextures of leaf surfaces on PDMS to get a hydrophobic mold. Their surface morphology of the natural leaves and replicate ones is examined and the relationship of different surface structures and their hydrophobic characteristics are deduced. Better hydrophobic properties are seen on the lotus leave which has papilla cells and the hibiscus and the wormwood leaves with convex cells. However, no obvious difference in contact angle of negative mode is observed. The papilla cells structure with hydrophobic material at positive mode makes hydrophobic surfaces more hydrophobic.
參考文獻
[1] W. Barthlott, C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,”Planta, vol.202, pp. 1-8, 1997.
[2] J.Y. Shiu, C.W. Kuo, P. Chen, C.Y. Mou, “Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography,” Chem. Mater., vol.16, pp. 561-564, 2004.
[3] A. Marmur, “The Lotus Effect: Superhydrophobicity and Metastability,” Langmuir, vol.20, pp.3517-3519, 2004.
[4] I. P. Parkin, R. G. Palgrave, “Self-Cleaning Coatings,” J. Mater. Chem., vol.15, pp. 1689-1695, 2005.
[5] X. Feng, L. Jiang, “Design and Creation of Superwetting/Aniwetting Surfaces,” Adv. Mater., vol. 18, pp.3063-3078, 2006
[6] B. Bhushan, “Springer Handbook of Nanotechnology,” Springer-Verlag Berlin Heidelberg, 2004.
[7] B. Bhushan, “Introduction to Tribology,” Wiley, New York, 2002.
[8] B. Bhushan, “Adhesion and Stiction: Mechanisms, measurement techniques and methods for reduction,” J. Vac. Sci. Technol., B, vol.21, pp.2262-2296, 2003.
[9] R.N. Wenzel, “Resistance of Solid Surfaces to Wetting by Water,” Ind. Eng. Chem., vol.28, pp.988-994, 1936.
[10] A.B.D. Cassie, S. Baxter, “Wettability on Porous Surfaces,” Trans. Faraday Soc., vol.40, pp.546-551, 1944.
[11] J.R.E. Johnson, R.H. Dettre, “Contact Angle, Wettability and Adhesion, Advances in Chemistry Series,” Adv. Chem. Ser., vol.43, pp.112, 1963.
[12] W. Li, A. Amirfazli, “Microtextured Superhydrophobic Surfaces: A Thermodynamic Analysis,” Adv. Colloid Interface Sci., vol.132, pp.51-68, 2007.
[13] J.F.C. Oliver, S.G. Mason, “Resistance to Spreading of Liquids by Sharp Edges,” j. Colloid Interface Sci., vol.59, pp.568-581, 1977.
[14] K. Koch, and W. Barthlott, “Superhydrophobic and Superhydrophioic Plant Surfaces: An Inspiration for Biomimetic Materials,” Phil. Trans. R. Soc., vol.367, pp.1487-1509, 2009.
[15] J. Heintzenberg, “Fine particles in the global troposphere – A review,” Tellus, Ser. B, vol.41, pp.149-160, 1989.
[16] J. Burghardt, H. Kaiser, H. Goldbach, and L. Kappen, “Measurements of electrical leaf surface conductance reveal re-condensation of transpired water vapour on leaf surfaces,” Plant, Cell Environ., vol.22, pp.189-196, 1999.
[17] J. Burghardt, K. Koch, and H. Kaiser, “Deliquescence of deposited atmospheric particles on leaf surfaces,” Water, Air, Soil Pollut., vol.1, pp.313-321, 2001.
[18] C. Neinhuis, and W. Barthlott, “Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces,” Ann. Bot., vol.79, pp.667-677, 1997.
[19] K. Koch, B. Bhushan, and W. Barthlott, “Diversity of structure, morphology and wetting of plant surfaces,” Soft Matter., vol.4, pp.1943-1963, 2008.
[20] X. Feng, L. Feng, M. Jin, J. Zhai, L. Jiang, and D. Zhu, “Reversible Super-hydrophobicity to Super-hydrophilicity Transition of Aligned ZnO Nanorod Films,” Journal of the American Chemical Society, vol.126, pp.62-63.,2004.
[21] K. Tadanaga, N. Katata, and T. Minami, “Formation Process of Super-Water-Repellent Al2O3 Coating Films with High Transparency by the Sol-Gel Method,” Journal of the American Chemical Society, vol.80, pp.3213-3216,1997.
[22] M.H. Jin, X.J. Feng, J.M. Xi, J. Zhai, K.W. Cho, L. Feng, L. Jiang, “Super-Hydrophobic PDMS Surface with Ultra-Low Adhesive Force,” Macromolecular Rapid Communications, vol.26, pp.1805-1809, 2005.
[23] T. Saison, C. Peroz, V. Chauveau, S. Berthier, E. Sondergard, and H. Arribart, “Replication of butterfly Wing and Natural Lotus Leaf Structures by Nanoimprint on Silica Sol-gel Films,” Bioinspiration & Biomimetics, vol.10, pp.1748-3182, 2008.
[24] H.Y. Erbil, A.L. Demirel, Y. Avci, O. Mert, “Transformation of a Simple Plastic into a Superhydrophobic Surface,” Science, vol.299, pp.1377-1380, 2003.
[25] J.T. Han, Y. Jang, D.Y. Lee, J.H. Park, S.H. Song, D.Y. Ban, “Fabrication of a Bionic Superhydrophobic Metal Surface by Sulfur-induced Morphological Development,” J. Mater. Chem., vol.15, pp.3089-3092, 2005.
[26] R.D. Hazlett, “Fractal Applications: Wettability and Contact Angle,”Journal of Colloid and Interface Science, Vol.137, pp. 527-533,1990.
[27] J. Seo, E. Ertekin, M.S. Pio, and L.P. Lee, “Self-Assembly Templates by Selective Plasma Surface Modification of Micropatterned Photoresist,” 15th IEEE International Micro Electro Mechanical Systems Conference, Las Vegas, Nevada, USA, Jan., pp.192-195, 2002.
[28] E. Balaur, J. Macak, M. Tsuchiya, H.P. Schmuki, “Stimuli Responsive Materials: New Avenues Toward Smart Organic Devices,” J. Mater. Chem., vol.15, pp.4488-4491, 2005.
[29] A. Kawai, H. Nagata, “Wetting Behavior of Liquid on Geometrical Rough Surface Formed by Photolithograpy,” Jpn. J. Appl. Phys., vol.33, pp.1283-1285, 1994.
[30] D. Oner, T.J. McCarthy, “Ultrahydrophobic Surfaces – Effects of Topography Length Scales on Wettability,” Langmuir, vol.16, pp.7777-7782, 2000.
[31] Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto, “Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets,” Langmuir, vol.18, pp.5818-5822, 2002.
[32] C.H. Choi, C. J. Kim, “Fabrication of a Dense Array of Tall Nanostructures Over a Large Sample Area with Siderwall Profile and Tip Sharpness Control,” Nanotechnology, vol.17, pp.5326-5333, 2006.
[33] M. Qu, G. Zhao, X. Cao, and J. Zhang, “Biomimetic Fabrication of Lotus-leaf-like Structured Polyaniline Film with Stable Superhydrophobic and Conductive Properties,” Langmuir, vol.24, pp.4185-4189, 2008.
[34] X.Zheng, and S. Li,“ The hydrophobicity of surfaces with micro-structures,” Proceedings of the 1st IEEE International, January 18 - 21, 2006.
[35] F. Cao, Z. Guan, and D. Li, “Preparation of Material Surface Structure Similar to Hydrophobic Structure of Lotus Leaf,” Journal of Wuhan University of Technology-Mater. Sci. Ed., Aug. 2008.
[36] M. Sun, C. Luo, H. Ji, O. Qi, D. Yu, and Y. Chen, “Artificail Lotus leaf by Nanocasting,” Langmuir, vol.21, pp.8978-8981, 2005
[37] Y. Berdichevsky, J. Khandurina, A. Guttman, Y.H. Lo, “UV/ozone modification of poly(dimethylsiloxane) microfluidic channels”, Sensors and Actuators B, vol.97, pp.402–408, 2004