| 研究生: |
喻俊宗 Yu, Jyun-Zong |
|---|---|
| 論文名稱: |
脈衝雷射於熱改質分析與具非侵入式檢測之三維微加工 Pulsed Laser for Thermal Modification Analysis and 3D Microfabrication with Noninvasive Inspection |
| 指導教授: |
張家源
Chang, Chia-Yuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 多光子激發螢光顯微術 、雷射加工 、光熱反應 、雙光子微影技術 |
| 外文關鍵詞: | multiphoton excitation fluorescence microscopy, laser processing, photothermal effect, two-photon lithography |
| 相關次數: | 點閱:71 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超快雷射的將功率集中在非常短脈衝時間內有極大的尖端功率性質在非線性光學應用扮演非常重要的角色,如多光子激發螢光顯微術可重建樣品三維的螢光影像(multiphoton excitation fluorescence microscopy,MPEFM)、微機電系統(microfluidic device and microelectromechanical system,MEMS)應用中的集成電路(integrated circuit,IC)中結構精密通孔製作,或是光活性(photoactive)材料之光聚合反應,以超快雷射作為激發光源來建構實現三維微製造技術。
本論文主要藉由材料對雷射的非線性吸收形成光熱效應,以此效應開發模擬程式,模擬中考慮雷射光強的空間與時間分佈與材料隨的深度吸收變化,並可從單一材料擴展至多層材料進行模擬材料內溫度分佈隨著雷射脈衝時間變化,可用來優化雷射加工參數。近紅外(near-infrared,NIR)波長雷射可以穿透樣品深處使多光子激發螢光顯微鏡系統可重建高頻基板中的結構螢光影像,可作為非破壞檢測應用,除此之外透過物鏡聚焦使負光阻SU-8產生非線性雙光子吸收達到雙光子微影(two-photon lithography,TPL)製作三微結構,然而在TPL中以雷射加工過程中會發生非預期折射率的偏折,導致結構不正確,為了修正此問題,本文以SU-8自體激發螢光,其強度隨曝光參數而不同,因此利用重建的激發螢光訊號可以幫助雷射加工過程中的掃描路徑校正,在多光子激發螢光顯微鏡系統輔助下,具有不同三種雷射加工參數的堆疊微結構顯現出能有準確的軸向位置。
The ultrafast laser processing is an essential technique for micro/nano fabrication. The laser wavelength of near-infrared (NIR) region can penetrate deep in the specimen and initialize photochemical reaction by nonlinear two-photon absorption inside the focal volume of the objective. Together with the three-axis laser scanning mechanism, three dimensional (3D) and complex microstructures could be developed by two-photon lithography (TPL). SU-8 is a negative photoresist and has superior material properties such as high chemical resistance, low creep deformation, low thermal conductivity, and great optical transparency above 360 nm. It can achieve high aspect ratio structure and has been widely used for microfluidic device and microelectromechanical system (MEMS) applications. However, the laser beam might pass through the structure which was fabricated with different laser parameter. TPL would suffer the refractive index change during laser processing and result inaccurate structure. This paper presents the laser processed SU-8 structures exhibit two-photon fluorescence which intensity is varied with different exposure dose. The reconstructed 3D fluorescence information could thus assist laser scanning path correction during laser processing. A three-stack microstructure with different processing parameters per stack is shown to have accurate thickness and axial position with the two-photon excited fluorescence assistance.
1. K. C. Phillips, H. H. Gandhi, E. Mazur, and S. K. Sundaram, “Ultrafast laser processing of materials: a review,” Adv. Opt. Photon. 7(4), 684–712 (2015).
2. W. R. Zipfel, R. M. Williams ,and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat Biotechnol. 21(11), 13691377 (2003).
3. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat Biotechnol. 21(11), 1356–1360 (2003).
4. E. S. Barnard, E. T. Hoke, S. T. Connor, J. R. Groves, T. Kuykendall, Z. Yan, E. C. Samulon, and E. D. Bourret-Courchesne, “Probing carrier lifetimes in photovoltaic materials using subsurface two-photon microscopy,” Sci. Rep. 3, 2098(2013).
5. V. Kalinushkin, O. Uvarov, and A. Gladilin, “Photoluminescent tomography of semiconductors by two-photon confocal microscopy technique,” J. Electron. Mater. 47, 5087–5091 (2018).
6. M. H. Niemz, Laser-Tissue Interactions, 4th ed. (Springer, 2019).
7. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
8. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
9. J. Winter, M. Spellauge, J. Hermann, C. Eulenkamp, H. P. Huber, H. P. Huber, M. Schmidt, and M. Schmidt, “Ultrashort single-pulse laser ablation of stainless steel, aluminium, copper and its dependence on the pulse duration,” Opt. Express 29(10), 14561–14581 (2021).
10. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10(8), 554–560 (2016).
11. E. D. Lemma, B. Spagnolo, M. De Vittorio, and F. Pisanello, “Studying Cell Mechanobiology in 3D: The Two-Photon Lithography Approach,” Trends Biotechnol. 37(4), 358–372 (2019).
12. J. del Barrio and C. S.-Somolinos, “Light to Shape the Future: From Photolithography to 4D Printing,” Adv. Optical Mater. 7, 1900598 (2019).
13. I. Bernardeschi, M. Ilyas, and L. Beccai, “A Review on Active 3D Microstructures via Direct Laser Lithography,” Adv. Intell. Syst. 3, 2100051 (2021).
14. Z. Lisa, H. Jörg, W. Frank, S. Sukhdeep and S. Andreas, “Bio-inspired 3D micro structuring of a liver lobule via direct laser writing: A comparative study with SU-8 and SUEX,” J. Laser Appl. 34, 012007 (2021)
15. V. Harinarayana and Y. C. Shin, “Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review,” Opt. Laser Technol. 142, 107180 (2021).
16. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960).
17. W. Denk, J. H. Strickler, and W. W. Webb, “Two-Photon Laser Scanning Fluorescence Microscopy,” Science. 248(4951), 7376 (1990).
18. M. Göppert‐Mayer, “Elementary processes with two quantum transitions,” Ann. Phys. 18(78), 466479 (2009).
19. J. Olesiak-Banska, M. Waszkielewicz, P. Obstarczyk, and M. Samoc, “Two-photon absorption and photoluminescence of colloidal gold nanoparticles and nanoclusters,” Chem. Soc. Rev. 48(15), 4087–4117 (2019).
20. C. Xu and W. W. Webb, Topics in Fluorescence Spectroscopy, vol. 5, Chap. 11 (Springer,1997).
21. M. Sheik-Bahae, A. A. Said, T.-H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J Quantum Electron 26(4), 760–769 (1990).
22. J. Sheik-Bahae, J. Wang, R. DeSalvo, D. J. Hagan, and E. W. Van Stryland, “Measurement of nondegenerate nonlinearities using a two-color Z scan,” Opt. Lett. 17, 260 (1992).
23. T. Xia, D. J. Hagan, M. Sheik-Bahae, and E. W. Van Stryland, “Eclipsing z-scan measurement of λ/104 wave-front distortion,”Opt. Lett. 19, 317–319 (1994).
24. P. P. Pronko, S. K. Dutta, D. Du, and R. K. Singh, “Thermophysical effects in laser processing of materials with picosecond and femtosecond pulses,” J. Appl. Phys. 78, 6233 (1995).
25. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, and A. Tunnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys. A 63, 109 (1996).
26. W.-W. Shen and K.-N. Chen, “Three-Dimensional Integrated Circuit (3D IC) Key Technology: Through-Silicon Via (TSV),” Nanoscale Res Lett 12, 56 (2017).
27. M. J. Laakso, S. J. Bleiker, J. Liljeholm, G. E. Mårtensson, M. Asiatici, A. C. Fischer, G. Stemme, T. Ebefors, and F. Niklaus, “Through-Glass Vias for Glass Interposers and MEMS Packaging Applications Fabricated Using Magnetic Assembly of Microscale Metal Wires,” IEEE Access 6, 44306–44317 (2018).
28. M. Mirshafiei, J.-P. Berub, S. Lessard, R. Vall, and D. V. Plant, “Glass interposer for short reach optical connectivity,” Opt. Express 24(11), 12375–12384 (2016).
29. R. Delmdahl and R. Paetzel, “Laser Drilling of High-Density Through Glass Vias (TGVs) for 2.5D and 3D Packaging,” J. Microelectron. Packag. Soc. 21, 53–57 (2014).
30. L. Hof and J. A. Ziki, “Micro-Hole Drilling on Glass Substrates—A Review,” Micromachines 8(2), 53 (2017).
31. N. Kroll and K. M. Watson, “Theoretical Study of Ionization of Air by Intense Laser Pulses,” Phys. Rev. A 5, 1883 (1972).
32. N. Yokoshi and H. Ishihara, “Giant multiphoton absorption in silicon,” Nat. Photonics 12, 125–126 (2018).
33. A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, and J. Feldmann, “Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals,” Nat. Commun. 9, 1518 (2018).
34. K. Itoh, W. Watanabe, S. Nolte, and C. Schaffer, “Ultrafast processes for bulk modification of transparent materials,” MRS Bull. 31(8), 620–625 (2006).
35. W. Watanabe, Y. Li, and K. Itoh, “[INVITED] Ultrafast laser micro-processing of transparent material,” Opt. Laser Technol. 78, 52–61 (2016).
36. Z. Wang, L. Jiang, X. Li, A. Wang, Z. Yao, K. Zhang, and Y. Lu, “High-throughput microchannel fabrication in fused silica by temporally shaped femtosecond laser Bessel-beam-assisted chemical etching,” Opt. Lett. 43(1), 98–101 (2018).
37. T. Ito and S. Okazaki, “Pushing the limits of lithography,” Nature 406(6799), 1027–1031 (2000).
38. G. Witzgall, R. Vrijen, E. Yablonovitch, V. Doan, and B. J. Schwartz, “Single-shot two-photon exposure of commercial photoresist for the production of three-dimensional structures,” Opt. Lett. 23(22), 1745–1747 (1998).
39. W. Teh, U. Dürig, G. Salis, R. Harbers, U. Drechsler, R. Mahrt, C. Smith, and H.-J. Güntherodt, “SU-8 for real three-dimensional subdiffraction-limit two-photon microfabrication,” Appl. Phys. Lett. 84(20), 4095–4097 (2004).
40. O. Vanderpoorten, Q. Peter, P. K. Challa, U. F. Keyser, J. Baumberg, C. F. Kaminski, and T. P. J. Knowles, “Scalable integration of nano-, and microfluidics with hybrid two-photon lithography,” Microsyst. Nanoeng. 5(1), 40 (2019).
41. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
42. R. Thomas, J. Li, S. Ladak, D. Barrow, and P. M. Smowton, “In situ fabricated 3D micro-lenses for photonic integrated circuits,” Opt. Express 26(10), 13436–13442 (2018).
43. Y.-H. Yu; Z.-N. Tian, T. Jiang, L.-G. Niu, and B.-R. Gao, “Fabrication of large-scale multilevel phase-type Fresnel zone plate arrays by femtosecond laser direct writing,” Opt. Commun. 362, 69–72 (2016).
44. H. E. Williams, D. J. Freppon, S. M. Kuebler, R. C. Rumpf, and M. A. Melino, “Fabrication of three-dimensional micro-photonic structures on the tip of optical fibers using SU-8,” Opt. Express 19(23), 22910–22922 (2011).
45. C. Zheng, A. Hu, R. Li, D. Bridges, and T. Chen, “Fabrication of embedded microball lens in PMMA with high repetition rate femtosecond fiber laser,” Opt. Express 23(13), 17584–17598 (2015).
46. J. Cao, B. Poumellec, F. Brisset, and M. Lancry, “Pulse energy dependence of refractive index change in lithium niobium silicate glass during femtosecond laser direct writing,” Opt. Express 26(6), 7460–7474 (2018).
47. V. V. Kononenko, V. P. Pashinin, M. S. Komlenok and V. I. Konov, “Laser-Induced Modification of Bulk Fused Silica by Femtosecond Pulses,” Laser Phys. 19(6), 1294–1299 (2009).
48. S. Nammi, S. Sooraj, N.J. Vasa, G. Balaganesan, A.C. Mathur, “A thermo temporal model of pulsed laser ablation of copper coated thin films on a polyimide substrate,” Int J Precis Technol 7, 138–150 (2017).
49. P. Golvari and S. M. Kuebler, “Fabrication of Functional Microdevices in SU-8 by Multi-Photon Lithography,” Micromachines 12(5), 472 (2021).
50. D. S.-Miranda, F. F. Castillon, J. J. S.-Sanchez, J. L. A.-Valenzuela, and H. Marquez, “Refractive index modulation of SU8 polymer optical waveguides by means of hybrid photothermal process,” Rev. Mex. Ing. Quim. 9(1), 85–90 (2010).
51. X.-B. Wang, J. Sun, C.-M. Chen, X.-Q. Sun, F. Wang, and D.-M. Zhang, “Thermal UV treatment on SU-8 polymer for integrated optics,” Opt. Mater. Express 4(3), 509–517 (2014).
52. S. Ashraf, I. Niskanen, B. Kanyathare, E. Vartiainen, C. Mattsson, R. Heikkilä, and G. Thungström, “Determination of complex refractive index of SU-8 by Kramers–Kronig dispersion relation method at the wavelength range 2.5–22.0 µm,” J. Quant. Spectrosc. Radiat. Transf. 224, 309–311 (2019).
53. P. S. Salter and M. J. Booth, “Adaptive optics in laser processing,” Light: Sci. Appl. 8(1), 110 (2019).
54. P. K. Ramkumar, C. M. Rountree, L. Saggere and J. D. Finan, “Metrology and characterization of SU-8 microstructures using autofluorescence emission,” J Micromech Microeng 31 045014, (2021).
55. H. J. Eichler, J. Eichler, and O. Lux, Laser Beam Propagation in Free Space, 220 (Springer, 2018).
56. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys B-Lasers O. 70(4), 587–591 (2000).
57. X. Liu, S. Guo, H. Wang, and L. Hou, “Theoretical study on the closed-aperture Z-scan curves in the materials with nonlinear refraction and strong nonlinear absorption,” Opt. Commun. 197(4–6), 431–437 (2001).
58. F.Z. Henari and P.S. Patil, “Nonlinear Optical Properties and Optical Limiting Measurements of {(1Z)-[4-(Dimethylamino)Phenyl]Methylene} 4-Nitrobenzocarboxy Hydrazone Monohydrate under CW Laser Regime,” Opt. Photonics J. 4(7) 182–188 (2014).
59. J. Ježek, T. Čižmár, V. Nedĕla, and P. Zemánek, “ Formation of long and thin polymer fiber using nondiffracting beam,” Opt. Express 14(19) 8506-8515 (2006).
60. P. K. Velpula, High aspect ratio sub-micron structuring of transparent materials using non-diffractive ultrafast laser beams: dynamics and interaction regimes, Optics/Photonic. Universit ́e Jean Monnet (2015).
61. R. Kashiwagi and S. Aramomi, “Laser-induced bulk damage of silica glass at 355nm and 266nm,” Proc. SPIE 10014, 10014J (2016).
62. K.-H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
63. C. S. R. Nathala, A. Ajami, W. Husinsky, B. Farooq, S. I. Kudryashov, A. Daskalova, I. Bliznakova, and A. Assion, “Ultrashort laser pulse ablation of copper, silicon and gelatin: effect of the pulse duration on the ablation thresholds and the incubation coefficients,” Appl. Phys., A Mater. Sci. Process. 122(107), 9625–9631 (2016).
64. DuPont™ Kapton®, Polyimide Film Technical Data Sheet, from: https://docs.rs-online.com/c6e2/0900766b80659d8c.pdf
65. DuPont™ Kapton®, Polyimide Film Products of Decomposition, from: https://www.dupont.com/content/dam/dupont/amer/us/en/products/ei-transformation/documents/EI-10145-Kapton-Products-of-Decomposition.pdf
66. W. Jiang, Z. Liu, Q. Kong, J. Yao, C. Zhang, P. Han, G. Cui, “A high temperature operating nanofibrous polyimide separator in Li-ion battery,” Solid State Ionics 232, 44–48 (2013).
67. D. P. Brunco, Michael O. Thompson, C. E. Otis, and P. M. Goodwin, “Temperature measurements of polyimide during KrF excimer laser ablation,” J. Appl. Phys. 72 4344 (1992).
68. K. Mishchik, R. Beuton, O. Dematteo Caulier, S. Skupin, B. Chimier, G. Duchateau, B. Chassagne, R. Kling, C. Hönninger, E. Mottay, and J. Lopez, “Improved laser glass cutting by spatio-temporal control of energy deposition using bursts of femtosecond pulses,” Opt. Express 25(26), 33271–33282 (2017).
69. K. Kanosue, R. Augulis, D. Peckus, R. Karpicz, T. Shimosaka, S. Tamulevicǐus, V. Gulbinas, and S. Ando, “Polyimide and Imide Compound Exhibiting Bright Red Fluorescence with Very Large Stokes Shifts via Excited-State Intramolecular Proton Transfer II. Ultrafast Proton Transfer Dynamics in the Excited State,” Macromolecules 49, 1848–1857 (2016).
70. D. L. N. Kallepalli, A. T. K. Godfrey, J. Walia, F. Variola, A. Staudte, C. Zhang, Z. J. Jakubek, and P. B. Corkum, “Multiphoton laser-induced confined chemical changes in polymer films,” Opt. Express 28(8), 11267 (2020).
71. C.J.Wu, M.C.Hsieh and K.N.Chiang, “Strength evaluation of silicon die for 3D chip stacking packages using ABF as dielectric and barrier layer in through-silicon via,” Microelectron Eng 87(3), 505-509 (2010).
72. A. Suwa, J. Fujimoto, Y. Kawasuji, M. Kobayashi, M. Shimbori, T. Onose, M. Arakawa, A. Mizutani, and H. Mizoguchi, “Microprocessing of organic material for semiconductor packaging by 248 nm excimer laser,” Proc. SPIE, 10906, 1090609 (2019).
73. K.-C. Cho, C.-H. Lien, C.-Y. Lin, C.-Y. Chang, L. L. H. Huang, P. J. Campagnola, C. Y. Dong, and S.-J. Chen, “Enhanced two-photon excited fluorescence in three-dimensionally crosslinked bovine serum albumin microstructures,” Opt Express 19(12), 11732–11739 (2011).
74. Microchem, SU-8 3000 Data Sheet, from: https://kayakuam.com/wp-content/uploads/2019/09/SU-8-3000-Data-Sheet.pdf
75. Memscyclopedia, SU-8: Thick Photo-Resist for MEMS, from: https://memscyclopedia.org/su8.html#guerin97
76. X. Zheng, Y. Zhang, R. Chen, X. Cheng, Z. Xu, and T. Jiang, “Z-scan measurement of the nonlinear refractive index of monolayer WS2.,” Opt. Express 23(12), 15616–15623 (2015).
77. Z. Chowdhury and R. Fedosejevs, “Two photon absorption coefficients and processing parameters for photoresists,” Microsyst. Technol. 14(1), 59–67 (2007).
78. Coherent, specification of Chameleon Ultra series, from: https://www.coherent.com/lasers/oscillators/chameleon-ultra
79. IDS, specification of U3-3800CP CMOS camera, from: https://en.ids-imaging.com/store/u3-3800cp-rev-2-2.html