| 研究生: |
朱哲緯 Chu, Che-Wei |
|---|---|
| 論文名稱: |
具二硫化鉬/三氧化鉬/聚吡咯三元奈米複合電極材料之超級電容 MoS2/MoO3/polypyrrole ternary nanocomposites as supercapacitor electrode materials |
| 指導教授: |
丁志明
Ting, Jyh-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 146 |
| 中文關鍵詞: | 二硫化鉬 、三氧化鉬 、聚吡咯 、超級電容 |
| 外文關鍵詞: | MoS2, MoO3, polypyrrole, supercapacitor |
| 相關次數: | 點閱:105 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在我們的實驗研究報告中,我們將利用簡單、可行的方法去合成三元奈米複合電極材料。此三元奈米複合材料是在含有二硫化鉬(MoS2)、三氧化鉬(MoO3)均勻分布的懸浮溶液中加入吡咯(Pyrrole)單體,再經由氧化聚合反應合成一新穎且具備高效能的複合材料,我們將此複合物應用於超級電容之電極材料。
我們利用部分氧化剝離法去製備具有MoO3奈米結構顆粒點綴於表面的少層奈米片狀的MoS2溶液,再加入吡咯單體,經過原位氧化聚合反應合成MoS2/ MoO3/PPy複合材料。而本次研究主要著重在(1)經由改變不同反應天數(1 dy, 1.5 dy, 2 dy, 2.5 dy, 3 dy, 5 dy)後部分氧化剝離的MoS2之變化,並且做一添加過量雙氧水(6.9 ml)的試片作為對照,並提出可能的反應機制;(2)將前一步反應後的的試片(1 dy, 2 dy, 3 dy)加入定量Pyrrole單體(5.3 μl)合成為三元複合材料,並且探討其電容值的提升與現象。
將以上所得到的材料利用不同儀器進行材料與電化學的分析。主要使用的儀器包含(1)表面形貌:掃描式電子顯微鏡(Scanning electron microscopy, SEM)、穿透式電子顯微鏡(Transmission electron microscopy, TEM);(2)物理化學性質:Zeta-電位分析儀(Zeta-potential analyzer)、拉曼光譜儀( Raman spectrometer)、電子能譜儀(X-ray photoelectron spectrometer, XPS)、傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy ,FTIR);(3)電化學特性:循環伏安法(cyclic voltammetry, CV)、電化學阻抗頻譜(Electrochemical impedance spectroscopy, EIS)等。
經由SEM得知MoS2將隨著反應天數的增加,從原本的塊狀材料剝離成具有少層片狀結構,再經過更長時間反應後,發生穿孔而變成具有孔洞的片狀結構,最後變成奈米尺度的小片狀或是點狀結構;經由兩天反應後的MoS2因具有較大比表面積與適中電性,而有最佳表現(188F g-1)。最後,我們將PPy加入系統中形成三元奈米複合材料,其所得到的電容與循環壽命表現皆有顯著的提升。
Herein, we focus our study primarily on (1) The effects of the time (1dy, 1.5dy, 2dy, 2.5dy, 3dy, 5dy) and the amount of H2O2 (4ml and6.9ml) during the MoS2 partially oxidized exfoliation process and the mechanism involved. (2) Synthesis of MoS2/MoO3/PPy ternary composites from as-prepared suspension solutions (1dy, 2dy, 3dy) with various amounts of Py monomer (5.3μl and 10.6μl). (3) Propose a reasonable mechanism of the unexpected formation of carbon film.
In our study, MoS2 was exfoliated into large area few-layered sheet for 1dy reaction. Furthermore, MoS2 was penetrated by H2O2 and the morphology became sheet structure with pores. Finally, MoS2 lateral size decreased into nanoscale and became nanosheets or nanodots during following reaction day. Then we discussed the electrochemical performance of MoS2/MoO3 and their PPy composites. For merely MoS2/MoO3, the highest capacitance reached 188 F g-1. After PPy addition, either 1dy, 2dy or 3dy MoS2/MoO3 all had a dramatic capacitance promotion. The highest specific capacitance reached 405.7 F g-1 at the scan rate of 10 mV s-1 and showed barely degradation after 500 cycles charge-discharge testing.
[1] X. Hu, W. Zhang, X. Liu, Y. Mei, and Y. Huang, Nanostructured Mo-based electrode materials for electrochemical energy storage. Chem Soc Rev, 2015. 44(8): p. 2376-2404.
[2] P. Simon, Y. Gogotsi, and B. Dunn, Materials science. Where do batteries end and supercapacitors begin? Science, 2014. 343(6176): p. 1210-1211.
[3] P. Simon and Y. Gogotsi, Materials for electrochemical capacitors. Nature materials, 2008. 7(11): p. 845-854.
[4] R. Kötz and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15): p. 2483-2498.
[5] R.A. Huggins, Supercapacitors and electrochemical pulse sources. Solid State Ionics, 2000. 134(1): p. 179-195.
[6] C. Zhao and W. Zheng, A Review for aqueous electrochemical supercapacitors. Frontiers in energy research, 2015. 3.
[7] E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon, 2001. 39(6): p. 937-950.
[8] M.R. Lukatskaya, O. Mashtalir, C.E. Ren, Y. Dall'Agnese, P. Rozier, P.L. Taberna, M. Naguib, P. Simon, M.W. Barsoum, and Y. Gogotsi, Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 2013. 341(6153): p. 1502-1505.
[9] M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, and M.W. Barsoum, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature, 2014. 516(7529): p. 78-81.
[10] M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Graphene-based ultracapacitors. Nano Lett, 2008. 8(10): p. 3498-3502.
[11] L.L. Zhang and X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem Soc Rev, 2009. 38(9): p. 2520-2531.
[12] G. Wang, L. Zhang, and J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev, 2012. 41(2): p. 797-828.
[13] Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci., 2015. 8(3): p. 702-730.
[14] M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater, 2014. 26(7): p. 992-1005.
[15] X. Chia, A.Y. Eng, A. Ambrosi, S.M. Tan, and M. Pumera, Electrochemistry of nanostructured layered transition-metal dichalcogenides. Chem Rev, 2015. 115(21): p. 11941-11966.
[16] M. Ghidiu, M. Naguib, C. Shi, O. Mashtalir, L.M. Pan, B. Zhang, J. Yang, Y. Gogotsi, S.J. Billinge, and M.W. Barsoum, Synthesis and characterization of two-dimensional Nb4C3 (MXene). Chem Commun (Camb), 2014. 50(67): p. 9517-9520.
[17] C. Lin, J.A. Ritter, and B.N. Popov, Characterization of sol‐gel‐derived cobalt oxide xerogels as electrochemical capacitors. Journal of the Electrochemical Society, 1998. 145(12): p. 4097-4103.
[18] H.Y. Lee and J. Goodenough, Ideal supercapacitor behavior of amorphous V 2 O 5• nH 2 O in potassium chloride (KCl) aqueous solution. Journal of Solid State Chemistry, 1999. 148(1): p. 81-84.
[19] J.-G. Wang, B. Wei, and F. Kang, Facile synthesis of hierarchical conducting polypyrrole nanostructures via a reactive template of MnO2 and their application in supercapacitors. RSC Adv., 2014. 4(1): p. 199-202.
[20] G.A. Snook, P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. Journal of Power Sources, 2011. 196(1): p. 1-12.
[21] Y. Liu, B. Zhang, Y. Yang, Z. Chang, Z. Wen, and Y. Wu, Polypyrrole-coated alpha-MoO3 nanobelts with good electrochemical performance as anode materials for aqueous supercapacitors. Journal of Materials Chemistry A, 2013. 1(43): p. 13582-13587.
[22] A.F. Burke, Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles. proceedings of the IEEE, 2007. 95(4): p. 806-820.
[23] R. Barrero, X. Tackoen, and J.V. Mierlo. Analysis and configuration of supercapacitor based energy storage system on-board light rail vehicles. in Power Electronics and Motion Control Conference, 2008. EPE-PEMC 2008. 13th. 2008.
[24] A. Lohner and W. Evers. Intelligent power management of a supercapacitor based hybrid power train for light-rail vehicles and city busses. in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual. 2004.
[25] R. Barrero, X. Tackoen, and J.V. Mierlo. Improving energy efficiency in public transport: Stationary supercapacitor based Energy Storage Systems for a metro network. in 2008 IEEE Vehicle Power and Propulsion Conference. 2008.
[26] L. Mir, I. Etxeberria-Otadui, I.P.d. Arenaza, I. Sarasola, and T. Nieva. A supercapacitor based light rail vehicle: system design and operations modes. in 2009 IEEE Energy Conversion Congress and Exposition. 2009.
[27] D.R. Crow, Principles and applications of electrochemistry. 1994: CRC Press.
[28] X. Liu and P.G. Pickup, Ru oxide/carbon fabric composites for supercapacitors. Journal of Solid State Electrochemistry, 2009. 14(2): p. 231-240.
[29] B. Xu, F. Wu, S. Chen, C. Zhang, G. Cao, and Y. Yang, Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochimica Acta, 2007. 52(13): p. 4595-4598.
[30] H.A. Andreas and B.E. Conway, Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochimica Acta, 2006. 51(28): p. 6510-6520.
[31] D. Qu and H. Shi, Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 1998. 74(1): p. 99-107.
[32] M. Endo, T. Maeda, T. Takeda, Y. Kim, K. Koshiba, H. Hara, and M. Dresselhaus, Capacitance and pore-size distribution in aqueous and nonaqueous electrolytes using various activated carbon electrodes. Journal of the Electrochemical Society, 2001. 148(8): p. A910-A914.
[33] E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, and F. Béguin, Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon, 2006. 44(12): p. 2498-2507.
[34] J. Huang, B.G. Sumpter, and V. Meunier, A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry–A European Journal, 2008. 14(22): p. 6614-6626.
[35] Q. Lu, J.G. Chen, and J.Q. Xiao, Nanostructured Electrodes for High‐Performance Pseudocapacitors. Angewandte Chemie International Edition, 2013. 52(7): p. 1882-1889.
[36] A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016. 58: p. 1189-1206.
[37] K. Sakiyama, S. Onishi, K. Ishihara, K. Orita, T. Kajiyama, N. Hosoda, and T. Hara, Deposition and properties of reactively sputtered ruthenium dioxide films. Journal of the Electrochemical Society, 1993. 140(3): p. 834-839.
[38] I.-H. Kim and K.-B. Kim, Electrochemical Characterization of Hydrous Ruthenium Oxide Thin-Film Electrodes for Electrochemical Capacitor Applications. Journal of the Electrochemical Society, 2006. 153(2): p. A383.
[39] D. Yan, Z. Guo, G. Zhu, Z. Yu, H. Xu, and A. Yu, MnO2 film with three-dimensional structure prepared by hydrothermal process for supercapacitor. Journal of Power Sources, 2012. 199: p. 409-412.
[40] Y. Li, H. Xie, J. Wang, and L. Chen, Preparation and electrochemical performances of α-MnO 2 nanorod for supercapacitor. Materials Letters, 2011. 65(2): p. 403-405.
[41] M.-C. Liu, L. Kang, L.-B. Kong, C. Lu, X.-J. Ma, X.-M. Li, and Y.-C. Luo, Facile synthesis of NiMoO4•xH2O nanorods as a positive electrode material for supercapacitors. RSC Advances, 2013. 3(18): p. 6472.
[42] A. Chithambararaj and A.C. Bose, Hydrothermal synthesis of hexagonal and orthorhombic MoO3 nanoparticles. Journal of Alloys and Compounds, 2011. 509(31): p. 8105-8110.
[43] T. Tao, Q. Chen, H. Hu, and Y. Chen, MoO3 nanoparticles distributed uniformly in carbon matrix for supercapacitor applications. Materials Letters, 2012. 66(1): p. 102-105.
[44] M. Zhi, C. Xiang, J. Li, M. Li, and N. Wu, Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale, 2013. 5(1): p. 72-88.
[45] M. Kalaji, P. Murphy, and G. Williams, The study of conducting polymers for use as redox supercapacitors. Synthetic Metals, 1999. 102(1): p. 1360-1361.
[46] Y.-k. Zhou, B.-l. He, W.-j. Zhou, J. Huang, X.-h. Li, B. Wu, and H.-l. Li, Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites. Electrochimica Acta, 2004. 49(2): p. 257-262.
[47] V. Gupta and N. Miura, High performance electrochemical supercapacitor from electrochemically synthesized nanostructured polyaniline. Materials Letters, 2006. 60(12): p. 1466-1469.
[48] L.-Z. Fan and J. Maier, High-performance polypyrrole electrode materials for redox supercapacitors. Electrochemistry Communications, 2006. 8(6): p. 937-940.
[49] A. Malinauskas, J. Malinauskiene, and A. Ramanavicius, Conducting polymer-based nanostructurized materials: electrochemical aspects. Nanotechnology, 2005. 16(10): p. R51-62.
[50] M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, and A.H. Windle, Controlling the nanostructure of electrochemically grown nanoporous composites of carbon nanotubes and conducting polymers. Composites Science and Technology, 2004. 64(15): p. 2325-2331.
[51] A. Österholm, T. Lindfors, J. Kauppila, P. Damlin, and C. Kvarnström, Electrochemical incorporation of graphene oxide into conducting polymer films. Electrochimica Acta, 2012. 83: p. 463-470.
[52] V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 2014. 7(5): p. 1597-1614.
[53] C. Lin, J.A. Ritter, B.N. Popov, and R.E. White, A mathematical model of an electrochemical capacitor with double‐layer and faradaic processes. Journal of the Electrochemical Society, 1999. 146(9): p. 3168-3175.
[54] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, and J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes. Journal of Materials Chemistry, 2012. 22(3): p. 767-784.
[55] Ö. Şahin and C. Saka, Preparation and characterization of activated carbon from acorn shell by physical activation with H 2 O–CO 2 in two-step pretreatment. Bioresource technology, 2013. 136: p. 163-168.
[56] N. Rambabu, R. Azargohar, A. Dalai, and J. Adjaye, Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications. Fuel Processing Technology, 2013. 106: p. 501-510.
[57] P. Carrott, M.R. Carrott, and P. Mourao, Pore size control in activated carbons obtained by pyrolysis under different conditions of chemically impregnated cork. Journal of analytical and applied Pyrolysis, 2006. 75(2): p. 120-127.
[58] J.-B. Yang, L.-C. Ling, L. Liu, F.-Y. Kang, Z.-H. Huang, and H. Wu, Preparation and properties of phenolic resin-based activated carbon spheres with controlled pore size distribution. Carbon, 2002. 40(6): p. 911-916.
[59] C. Kim and K. Yang, Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Applied physics letters, 2003. 83(6): p. 1216-1218.
[60] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol, 2008. 3(4): p. 206-209.
[61] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Letters, 2008. 8(3): p. 902-907.
[62] M.J. Allen, V.C. Tung, and R.B. Kaner, Honeycomb carbon: a review of graphene. Chem Rev, 2009. 110(1): p. 132-145.
[63] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Letters, 2010. 10(12): p. 4863-4868.
[64] Y. Zhu, S. Murali, M.D. Stoller, A. Velamakanni, R.D. Piner, and R.S. Ruoff, Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors. Carbon, 2010. 48(7): p. 2118-2122.
[65] Y. Zhu, M.D. Stoller, W. Cai, A. Velamakanni, R.D. Piner, D. Chen, and R.S. Ruoff, Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS nano, 2010. 4(2): p. 1227-1233.
[66] Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, and M. Thommes, Carbon-based supercapacitors produced by activation of graphene. Science, 2011. 332(6037): p. 1537-1541.
[67] F. Perrozzi, S. Prezioso, and L. Ottaviano, Graphene oxide: from fundamentals to applications. J Phys Condens Matter, 2015. 27(1): p. 013002.
[68] C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett, 2010. 10(12): p. 4863-4868.
[69] K.S. Novoselov, V.I. Fal'ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, A roadmap for graphene. Nature, 2012. 490(7419): p. 192-200.
[70] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C, 2009. 113(30): p. 13103-13107.
[71] L. Guo, H.-B. Jiang, R.-Q. Shao, Y.-L. Zhang, S.-Y. Xie, J.-N. Wang, X.-B. Li, F. Jiang, Q.-D. Chen, T. Zhang, and H.-B. Sun, Two-beam-laser interference mediated reduction, patterning and nanostructuring of graphene oxide for the production of a flexible humidity sensing device. Carbon, 2012. 50(4): p. 1667-1673.
[72] Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff, Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater, 2010. 22(35): p. 3906-3924.
[73] X. Wang, X. Shen, Z. Wang, R. Yu, and L. Chen, Atomic-Scale Clarification of Structural Transition of MoS2 upon Sodium Intercalation. ACS nano, 2014. 8(11): p. 11394-11400.
[74] A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, and G. Seifert, New route for stabilization of 1T-WS2 and MoS2 phases. The Journal of Physical Chemistry C, 2011. 115(50): p. 24586-24591.
[75] L. Mattheiss, Band structures of transition-metal-dichalcogenide layer compounds. Physical Review B, 1973. 8(8): p. 3719.
[76] S. Zhao, C. Li, L. Wang, N. Liu, S. Qiao, B. Liu, H. Huang, Y. Liu, and Z. Kang, Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability. Carbon, 2016. 99: p. 599-606.
[77] S. Bai, L. Wang, X. Chen, J. Du, and Y. Xiong, Chemically exfoliated metallic MoS2 nanosheets: A promising supporting co-catalyst for enhancing the photocatalytic performance of TiO2 nanocrystals. Nano Research, 2014. 8(1): p. 175-183.
[78] M. Fontana, T. Deppe, A.K. Boyd, M. Rinzan, A.Y. Liu, M. Paranjape, and P. Barbara, Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Scientific Reports, 2013. 3.
[79] A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010. 10(4): p. 1271-1275.
[80] X. Yang, W. Fu, W. Liu, J. Hong, Y. Cai, C. Jin, M. Xu, H. Wang, D. Yang, and H. Chen, Engineering crystalline structures of two-dimensional MoS2 sheets for high-performance organic solar cells. Journal of Materials Chemistry A, 2014. 2(21): p. 7727.
[81] J.-M. Yun, Y.-J. Noh, C.-H. Lee, S.-I. Na, S. Lee, S.M. Jo, H.-I. Joh, and D.-Y. Kim, Exfoliated and partially oxidized MoS2 nanosheets by one-pot reaction for efficient and stable organic solar cells. Small, 2014. 10(12): p. 2319-2324.
[82] L. David, R. Bhandavat, U. Barrera, and G. Singh, Polymer-derived ceramic Functionalized MoS2 composite paper as a stable lithium-ion battery electrode. Sci Rep, 2015. 5: p. 9792.
[83] J. Xiao, D. Choi, L. Cosimbescu, P. Koech, J. Liu, and J.P. Lemmon, Exfoliated MoS2 nanocomposite as an anode material for lithium ion batteries. Chemistry of Materials, 2010. 22(16): p. 4522-4524.
[84] N. Zheng, X. Bu, and P. Feng, Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity. Nature, 2003. 426(6965): p. 428-432.
[85] J.M. Soon and K.P. Loh, Electrochemical double-layer capacitance of MoS2 nanowall films. Electrochemical and Solid-State Letters, 2007. 10(11): p. A250-A254.
[86] X. Wang, H. Feng, Y. Wu, and L. Jiao, Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. Journal of the American Chemical Society, 2013. 135(14): p. 5304-5307.
[87] K. Krishnamoorthy, G.K. Veerasubramani, S. Radhakrishnan, and S.J. Kim, Supercapacitive properties of hydrothermally synthesized sphere like MoS2 nanostructures. Materials Research Bulletin, 2014. 50: p. 499-502.
[88] P. Ilanchezhiyan, G. Mohan Kumar, and T.W. Kang, Electrochemical studies of spherically clustered MoS2 nanostructures for electrode applications. Journal of Alloys and Compounds, 2015. 634: p. 104-108.
[89] A. Ramadoss, T. Kim, G.-S. Kim, and S.J. Kim, Enhanced activity of a hydrothermally synthesized mesoporous MoS2 nanostructure for high performance supercapacitor applications. New Journal of Chemistry, 2014. 38(6): p. 2379.
[90] L. Niu, J.N. Coleman, H. Zhang, H. Shin, M. Chhowalla, and Z. Zheng, Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation. Small, 2016. 12(3): p. 272-293.
[91] M.B. Dines, Lithium intercalation via n-butyllithium of the layered transition metal dichalcogenides. Materials Research Bulletin, 1975. 10(4): p. 287-291.
[92] P. Joensen, R. Frindt, and S.R. Morrison, Single-layer MoS2. Materials Research Bulletin, 1986. 21(4): p. 457-461.
[93] C.C. Mayorga-Martinez, A. Ambrosi, A.Y.S. Eng, Z. Sofer, and M. Pumera, Transition metal dichalcogenides (MoS2, MoSe2, WS2 and WSe2) exfoliation technique has strong influence upon their capacitance. Electrochemistry Communications, 2015. 56: p. 24-28.
[94] A. Ambrosi, Z. Sofer, and M. Pumera, Lithium intercalation compound dramatically influences the electrochemical properties of exfoliated MoS2. Small, 2015. 11(5): p. 605-612.
[95] L. Cao, S. Yang, W. Gao, Z. Liu, Y. Gong, L. Ma, G. Shi, S. Lei, Y. Zhang, S. Zhang, R. Vajtai, and P.M. Ajayan, Direct laser-patterned micro-supercapacitors from paintable MoS2 films. Small, 2013. 9(17): p. 2905-2910.
[96] K.-J. Huang, L. Wang, Y.-J. Liu, Y.-M. Liu, H.-B. Wang, T. Gan, and L.-L. Wang, Layered MoS2–graphene composites for supercapacitor applications with enhanced capacitive performance. International Journal of Hydrogen Energy, 2013. 38(32): p. 14027-14034.
[97] K.-J. Huang, L. Wang, J.-Z. Zhang, L.-L. Wang, and Y.-P. Mo, One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor. Energy, 2014. 67: p. 234-240.
[98] L.-Q. Fan, G.-J. Liu, C.-Y. Zhang, J.-H. Wu, and Y.-L. Wei, Facile one-step hydrothermal preparation of molybdenum disulfide/carbon composite for use in supercapacitor. International Journal of Hydrogen Energy, 2015. 40(32): p. 10150-10157.
[99] K.-J. Huang, L. Wang, Y.-J. Liu, H.-B. Wang, Y.-M. Liu, and L.-L. Wang, Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochimica Acta, 2013. 109: p. 587-594.
[100] J. Wang, Z. Wu, K. Hu, X. Chen, and H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. Journal of Alloys and Compounds, 2015. 619: p. 38-43.
[101] G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, and Z. Lei, In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. Journal of Power Sources, 2013. 229: p. 72-78.
[102] J. Rajeswari, P.S. Kishore, B. Viswanathan, and T.K. Varadarajan, One-dimensional MoO2 nanorods for supercapacitor applications. Electrochemistry Communications, 2009. 11(3): p. 572-575.
[103] X. Li, J. Shao, J. Li, L. Zhang, Q. Qu, and H. Zheng, Ordered mesoporous MoO2 as a high-performance anode material for aqueous supercapacitors. Journal of Power Sources, 2013. 237: p. 80-83.
[104] T. Brezesinski, J. Wang, S.H. Tolbert, and B. Dunn, Ordered mesoporous [alpha]-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nature materials, 2010. 9(2): p. 146-151.
[105] I. Shakir, M. Shahid, H.W. Yang, and D.J. Kang, Structural and electrochemical characterization of α-MoO3 nanorod-based electrochemical energy storage devices. Electrochimica Acta, 2010. 56(1): p. 376-380.
[106] H. Ji, X. Liu, Z. Liu, B. Yan, L. Chen, Y. Xie, C. Liu, W. Hou, and G. Yang, In Situ Preparation of Sandwich MoO3/C Hybrid Nanostructures for High-Rate and Ultralong-Life Supercapacitors. Advanced Functional Materials, 2015. 25(12): p. 1886-1894.
[107] X. Zhang, X. Zeng, M. Yang, and Y. Qi, Investigation of a Branchlike MoO3/polypyrrole hybrid with enhanced electrochemical performance used as an electrode in supercapacitors. ACS Appl Mater Interfaces, 2014. 6(2): p. 1125-1130.
[108] L. Dong, S. Lin, L. Yang, J. Zhang, C. Yang, D. Yang, and H. Lu, Spontaneous exfoliation and tailoring of MoS2 in mixed solvents. Chem Commun (Camb), 2014. 50(100): p. 15936-15939.
[109] L.L. Zhang, S. Zhao, X.N. Tian, and X.S. Zhao, Layered graphene oxide nanostructures with sandwiched conducting polymers as supercapacitor electrodes. Langmuir, 2010. 26(22): p. 17624-17628.
[110] X. Zhang, J. Zhang, W. Song, and Z. Liu, Controllable synthesis of conducting polypyrrole nanostructures. The Journal of Physical Chemistry B, 2006. 110(3): p. 1158-1165.
[111] M. Bichat, E. Raymundo-Piñero, and F. Béguin, High voltage supercapacitor built with seaweed carbons in neutral aqueous electrolyte. Carbon, 2010. 48(15): p. 4351-4361.
[112] H.Y. Lee and J.B. Goodenough, Supercapacitor behavior with KCl electrolyte. Journal of Solid State Chemistry, 1999. 144(1): p. 220-223.
[113] A.J. Bard, L.R. Faulkner, J. Leddy, and C.G. Zoski, Electrochemical methods: fundamentals and applications. Vol. 2. 1980: Wiley New York.
[114] A.J. Bard and L.R. Faulkner, Electrochemical methods: principles and applications. Electrochemical Methods: Principles and Applications, 2001: p. 386-428.
[115] L. Muscuso, S. Cravanzola, F. Cesano, D. Scarano, and A. Zecchina, Optical, Vibrational, and structural properties of MoS2 nanoparticles obtained by exfoliation and fragmentation via ultrasound cavitation in isopropyl alcohol. The Journal of Physical Chemistry C, 2015. 119(7): p. 3791-3801.
[116] M. Anwar, C. Hogarth, and R. Bulpett, Effect of substrate temperature and film thickness on the surface structure of some thin amorphous films of MoO3 studied by X-ray photoelectron spectroscopy (ESCA). Journal of Materials Science, 1989. 24(9): p. 3087-3090.
[117] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat, From bulk to monolayer MoS2: Evolution of raman scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
[118] A.P. Nayak, T. Pandey, D. Voiry, J. Liu, S.T. Moran, A. Sharma, C. Tan, C.H. Chen, L.J. Li, M. Chhowalla, J.F. Lin, A.K. Singh, and D. Akinwande, Pressure-dependent optical and vibrational properties of monolayer molybdenum disulfide. Nano Lett, 2015. 15(1): p. 346-353.
[119] J. Du, D. Mishra, and J.-M. Ting, Surface modified carbon cloth for use in electrochemical capacitor. Applied Surface Science, 2013. 285: p. 483-489.