| 研究生: |
簡毓軒 Chien, Yu-Hsuan |
|---|---|
| 論文名稱: |
介相瀝青活性碳在不同酸鹼度電解液之電容行為 The Capacitive Performance of activated Mesophase Pitch in Aqueous Electrolyte Solutions of Varying pH Values |
| 指導教授: |
鄧熙聖
Teng, Hsi-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 孔洞碳材 、介相瀝青 、電雙層電容 、電化學電容器 |
| 外文關鍵詞: | Porous carbon, Mesophase pitch, Double layer capacitace, Electrochemical capacitor |
| 相關次數: | 點閱:74 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將介相瀝青活性碳(aMP)加入5 wt %奈米碳管進行研磨(aMP-mt),並測試物性及組成電容器探討其在三種不同酸鹼度電解液(1 M硫酸鈉、2 M硫酸、9 M氫氧化鉀)中的電化學特性。BET表面積測試中,aMP-mt的比表面積高達3000 m2 g-1以上,表面積中微孔佔了大部分,這些微孔提供了形成電雙層的區域。在三極式循環伏安測試中,由於酸鹼度的關係,aMP-mt電極在硫酸中的操作電位窗偏向正電位,氫氧化鉀偏向負電位,而在中性的硫酸鈉中的操作電位窗可高達1.9 V。二極式的循環伏安測試中aMP-mt電極在三種電解液下的高掃描速率CV圖都能維持方正的矩形。定電流充放電的電流與時間關係圖中,呈現出對稱三角形表示典型的電容行為,而放電電容值可高達300 F g-1。在阻力分析部分,由於三種電解液的離子尺寸不同,造成了aMP-mt電極在這三種電解液下的各個阻力值有不同差異。而aMP-mt電極在比功率為1000W kg-1時比能量可高於7 Wh kg-1,顯現出很廣的操作範圍,在經過了兩萬次循環充放電後,電容值都能維持在96 %,表示aMP-mt電極有很好的穩定性。
A novel composite of KOH activated mesophase pitch ball milled with carbon nanotubes (aMP-mt) shows high surface area, pore structure consist of high content of micropore and outstanding performance as an electrode for electric double-layer formation in aqueous electrolytes. This study presents the electrochemical performance of aMP-mt with different pH value aqueous electrolytes (2 M H2SO4, 9 M KOH, and 1 M Na2SO4). The high surface area provide the region of forming double layer. The cyclic votammograms of aMP-mt in three electrode cell exibit different potential window due to the pH values of the electrolytes. Positive potential window in H2SO4, negative in KOH and the potential window can extend to 1.9 V in Na2SO4. In two electrode cyclic votammograms test, the plot shows nearly rectangular even at high scan rate. The symmetric triangle in constant charge-discharge current test means the aMP-mt shows typical capacitive performance, and the discharge capacitance can reached 300 F g-1. Due to the different sizes of the electrolyte ions, the resistance component show different values in each electrolytes. The specific energy can be reached 7 Wh kg-1 or larger at a specific power of 1000 W kg-1, showing high extent of operation. After 20000 cycles the capacitance retention can keep more than 96%.
1. R. Kotz, M. Carlen, Electrochemica Acta, 45 (2000) 2483
2. L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, J. Power Sources, 80 (1999) 149
3. J.P. Zheng, T.R. Jow, J. Power Sources, 62 (1996) 155
4. P. Simon and Y. Gogotsi, Nature Mater., 2008, 7, 845−854.
5. T. Thomberg, A. Janes and E. Lust, Electrochim. Acta, 2010, 55,3138–3143.
6. C. M. Ionica-Bousquet, W. J. Casteel, R. M. Pearlstein, G. GirishKumar, G. P. Pez, P. Gomez-Romero, M. R. Palacin and D. Munoz-Rojas, Electrochem. Commun., 2010, 12, 636–639.
7. H. J. Liu, W. J. Cui, L. H. Jin, C. X. Wang and Y. Y. Xia, J. Mater. Chem., 2009, 19, 3661–3667.
8. Naoi and Simon, ECS Interface, 17(1) (2008) 34.
9. Miller and Simon, ECS Interface, 17(1) (2008) 31.
10. Simon and Burke, ECS Interface, 17(1) (2008) 38.
11. K. Kinoshita, Carbon: electrochemical and physicochemical properties, John Wiley & Sons, New York, 1988, 293
12. B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105
13. T. Osaka, X. Liu, M. Nijima, T. Momma, J. Electrochem. Soc. 146 (1999) 1724
14. S. Yoon, J. Lee, T. Hyeon, S.M. Oh, J. Electrochem. Soc. 147 (2000) 2507
15. E. Frackowiak, F. Béguin, Carbon 39 (2001) 937
16. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshibak, H. Hara, J. Electrochem. Soc. 148 (2001) A910
17. C.T. Hsieh, H. Teng, Carbon 40 (2002) 667
18. Y.R. Nian, H. Teng, J. Electrochem. Soc. 149 (2002) A1008
19. D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765
20. Y. Soneda, M. Toyoda, K. Hashiya, J. Yamashita, M. Kodama, H. Hatori, Carbon 41 (2003) 2680
21. C. Kim, S.H. Park, W.J. Lee, K.S. Yang, Electrochimica Acta 50 (2004) 877
22. C. Kim, J.S. Kim, S.J. Kim, W.J. Lee, K.S. Yang, J. Electrochem. Soc. 151 (2004) A769
23. C. Kim, J. Power Sources 142 (2005) 382
24. H.Y. Liu, K.P. Wang, H. Teng, Carbon 43 (2005) 559
25. C.S. Li, D.Z. Wang, X.F. Wang, J. Liang, Carbon 43 (2005) 1557
26. K. Okajima, K. Ohta, M. Sudoh, Electrochim Acta 50 (2005) 2227
27. K.P. Wang, H. Teng, Carbon 44 (2006) 3218
28. C.S. Du, J. Yeh, N. Pan Nanotechnology 16 (2005) 350
29. Y.Z. Wei, B. Fang, S. Iwasa, M. Kumagai, J. Power Sources 141 (2005) 386
30. C.S. Du, N. Pan, Nanotechnology 17 (2006) 5314
31. G.J. Lee, S.I. Pyun, Electrochimica Acta 51 (2006) 3029
32. B. Fang, L. Binder, J. Power Sources 163 (2006) 616
33. S.R.S. Prabaharan, R. Vimala, Z. Zainal, J. Power Sources 161 (2006) 730
34. K.H. An, Y.H. Lee, J. Power Sources 173 (2007) 621
35. B. Fang, L. Binder, Electrochimica Acta 52 (2007) 6916
36. E. Frackowiak, K. Metenier, V. Bertagna, F. Béguin, Appl. Phys. Lett. 77 (2000) 2421
37. E. Frackowiak, K. Jurewicz, S. Delpeux, F. Béguin, J. Power Sources 97–98 (2001) 822
38. K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Adv. Mater. 13 (2001) 497
39. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater. 11 (2001) 387
40. M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, J. Fray, A.H. Windle, Adv. Mater. 14 (2002) 382
41. M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Chem. Mater. 14 (2002) 1610
42. B.J. Yoon, S.H. Jeong, K.H. Lee, H.S. Kim, C.G. Park, J.H. Han, Chem. Phys. Lett. 388 (2004) 170
43. H. Zhang, G. Cao, Y. Yang, Z. Gu, J. Electrochem. Soc. 155 (2008) K19
44. Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, J. Mater. Chem. 16 (2006) 2984
45. C.H. Wang, H.C. Shih , Y.T. Tsai, H.Y. Du, L.C. Chen, K.H. Chen, Electrochimica Acta 52 (2006) 1612
46. F. Su, X. Li, L. Lv, X.S. Zhao, Carbon 44 (2006) 799
47. N. Sonoyama, M. Ohshita, A. Nijubu, H. Nishikawa, H. Yanase, J.I. Hayashi, T. Chiba, Carbon 44 (2006) 1754
48. H.L. Zhang, Y. Zhang, X.G. Zhang, F. Li, C. Liu, J. Tan, H.M. Cheng, Carbon 44 (2006) 2778
49. J.M. Rosolen, E.Y. Matsubara, M.S. Marchesin, S.M. Lala, L.A. Montoro, S. Tronto, J. Power Sources 162 (2006) 620
50. X.W. Chen, D.S. Su, S.B.A. Hamid, R. Schlögl, Carbon 45 (2007) 892
51. S. Brunauer, The Adsorption of Gases and Vapor. Vol. 1, Physical Adsorption, Princeton University, Princeton, Now York, 1943
52. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angew. Chem. Int. Ed., 38, 56-77 (1999)
53. A.H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970
54. M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon 40 (2000) 2961
55. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett. 70 (1997) 2684
56. L. Liu, Y. Qin, Z.X. Guo, D. Zhu, Carbon 41 (2003) 331
57. K.H. Liao, J.M. Ting, Carbon, 42 (2004) 509
58. 蔡淑慧”拉曼光譜在奈米碳管檢測上之應用”, 奈米通訊, 第12卷第2期, 財團法人國家實驗研究院 (2005).
59. H.D. Young, Physics, Addison-Wesley Publishing Co. :New York, 1992
60. A.J. Bard, L.R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996
61. D. Qu, H. Shi, J. Power Sources 74 (1998) 99
62. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch :New York, (1998).
63. J.S. Mattson, Jr. H.B. Mark, Activated Carbon : Surface Chemistry and Adsorption from Solution, Wiley-Vch :New York, 1998
64. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980
65. R.D. Levie, Electrochim. Acta. 8 (1963) 751
66. L.G. Austin, E.G.. Gagnon, J. Electrochem. Soc. 120 (1973) 251
67. M. A. Lillo-R_odenas, D. Cazorla-Amor_os, A. Linares-Solano, F. B_eguin, C. Clinard and J. N. Rouzaud, Carbon, 2004, 42, 1305–1310.
68. Yaming Wang, Jianyun Cao, Yu Zhou, Jia-Hu Ouyang, Dechang Jia, and Lixin Guo, Journal of The Electrochemical Society, 159 (5) A579-A583
(2012)
69. Yu-Kuei Hsu, Ying-Chu Chen, Yan-Gu Lin, Li-Chyong Chen, Kuei-Hsien Chen, J. Mater. Chem., 2012, 22, 3383.
70. K. Jurewicz, E. Frackowiak, F. Béguin, Appl. Phys. A, 2004, 78, 981.
71. N. A. Seaton, J. P. R. Walton and N. Quirke, Carbon, 1989, 42, 853–861.
72. Z. Ryu, J. Zheng and M. Wang, Carbon, 1998, 36, 427–432.
73. Cheng-Wei Huang, Chien-Te Hsieh, Ping-Lin Kuo, Hsisheng Teng, J. Mater. Chem., 2012, 22, 7314
74. M. A. Lillo-R_odenas, D. Cazorla-Amor_os, A. Linares-Solano, F. Béguin, C. Clinard and J. N. Rouzaud, Carbon, 2004, 42, 1305–1310.
75. C. W. Huang, C. H. Hsu, P. L. Kuo, C. T. Hsieh and H. Teng, Carbon, 2011, 49, 895–903.
76. C. W. Huang and H. Teng, J. Electrochem. Soc., 2008, 155, A739–744.
77. S. Yoon, S. M. Oh, C. W. Lee and J. H. Ryu, J. Electroanal. Chem., 2011, 650, 187–195.
78. A.G. Volkov , S. Paula, D.W. Deamer, Bioelectrochemistry and Bioenergetics 42 (1997) 153-160
79. Berrin Tansel , John Sager, Tony Rector, Jay Garland, Richard F. Strayer, Lanfang Levine, Michael Roberts, Mary Hummerick, Jan Bauer, Separation and Purification Technology 51 (2006) 40–47
80. A.G. Pandolfo, A.F. Hollenkamp, Journal of Power Sources 157 (2006) 11–27
81. H. C. Huang, C. W. Huang, C. T. Hsieh, P. L. Kuo, J. M. Ting and H. Teng, J.Phys. Chem. C, 2011, ,115, 20689−20695.
82. N. Shimodaira, A. Masui, J. Appl. Phys. 92, 902 (2002)