簡易檢索 / 詳目顯示

研究生: 簡毓軒
Chien, Yu-Hsuan
論文名稱: 介相瀝青活性碳在不同酸鹼度電解液之電容行為
The Capacitive Performance of activated Mesophase Pitch in Aqueous Electrolyte Solutions of Varying pH Values
指導教授: 鄧熙聖
Teng, Hsi-Shen
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 95
中文關鍵詞: 孔洞碳材介相瀝青電雙層電容電化學電容器
外文關鍵詞: Porous carbon, Mesophase pitch, Double layer capacitace, Electrochemical capacitor
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將介相瀝青活性碳(aMP)加入5 wt %奈米碳管進行研磨(aMP-mt),並測試物性及組成電容器探討其在三種不同酸鹼度電解液(1 M硫酸鈉、2 M硫酸、9 M氫氧化鉀)中的電化學特性。BET表面積測試中,aMP-mt的比表面積高達3000 m2 g-1以上,表面積中微孔佔了大部分,這些微孔提供了形成電雙層的區域。在三極式循環伏安測試中,由於酸鹼度的關係,aMP-mt電極在硫酸中的操作電位窗偏向正電位,氫氧化鉀偏向負電位,而在中性的硫酸鈉中的操作電位窗可高達1.9 V。二極式的循環伏安測試中aMP-mt電極在三種電解液下的高掃描速率CV圖都能維持方正的矩形。定電流充放電的電流與時間關係圖中,呈現出對稱三角形表示典型的電容行為,而放電電容值可高達300 F g-1。在阻力分析部分,由於三種電解液的離子尺寸不同,造成了aMP-mt電極在這三種電解液下的各個阻力值有不同差異。而aMP-mt電極在比功率為1000W kg-1時比能量可高於7 Wh kg-1,顯現出很廣的操作範圍,在經過了兩萬次循環充放電後,電容值都能維持在96 %,表示aMP-mt電極有很好的穩定性。

    A novel composite of KOH activated mesophase pitch ball milled with carbon nanotubes (aMP-mt) shows high surface area, pore structure consist of high content of micropore and outstanding performance as an electrode for electric double-layer formation in aqueous electrolytes. This study presents the electrochemical performance of aMP-mt with different pH value aqueous electrolytes (2 M H2SO4, 9 M KOH, and 1 M Na2SO4). The high surface area provide the region of forming double layer. The cyclic votammograms of aMP-mt in three electrode cell exibit different potential window due to the pH values of the electrolytes. Positive potential window in H2SO4, negative in KOH and the potential window can extend to 1.9 V in Na2SO4. In two electrode cyclic votammograms test, the plot shows nearly rectangular even at high scan rate. The symmetric triangle in constant charge-discharge current test means the aMP-mt shows typical capacitive performance, and the discharge capacitance can reached 300 F g-1. Due to the different sizes of the electrolyte ions, the resistance component show different values in each electrolytes. The specific energy can be reached 7 Wh kg-1 or larger at a specific power of 1000 W kg-1, showing high extent of operation. After 20000 cycles the capacitance retention can keep more than 96%.

    摘要 I Abstract II 總目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1-1前言 1 1-2超高電容器的發展與應用 3 1-3多孔性碳材簡介 6 1-4研究動機 6 第二章 理論說明與文獻整理 8 2-1 碳材製備原理 8 2-2 碳材分析 12 2-2.1吸附基本理論 12 2-2.2 拉曼光譜 19 2-3 電容器 22 2-3.1 電容器簡介 22 2-3.2 平行板電容器 22 2-3.3電容器串並聯 24 2-3.4 二極式及三極式電容器 27 2-4 電雙層的概念及結構 29 2-4.1 電雙層原理 29 2-4.2 Helmholtz電雙層模型 29 2-4.3 Stern電雙層模型 31 2-4.4 電雙層結構 32 2-5 電化學測試方法 34 2-5.1 循環伏安法 34 2-5.2 交流阻抗理論 35 2-6 電子顯微鏡 41 2-6.1 掃描式電子顯微鏡(scanning electron microscope;SEM) 41 2-6.2 穿透式電子顯微鏡(Transmission electron microscopy;TEM) 42 第三章 實驗設備與方法 43 3-1 操作設備及藥品 43 3-2製備碳材 45 3-3 樣品鑑定 47 3-3.1氮氣物理吸脫附實驗 47 3-3.2 Raman分析 48 3-3.3 SEM結構分析 48 3-3.4 TEM微結構分析 48 3-4 熱處理 49 3-5電容器組裝 50 3-6 電化學分析方法 51 3-6.1 循環伏安法 51 3-6.2 定電流充放電 51 3-6.3 交流阻抗分析 52 第四章 結果與討論 53 4-1 aMP-mt分析 53 4-1.1 SEM分析 53 4-1.2 TEM分析 55 4-1.3 氮氣吸脫附分析 56 4-1.4 拉曼光譜分析 59 4-1.5 三極式循環伏安法 61 4-1.6二極式循環伏安法 64 4-1.7 定電流充放電行為與分析 66 4-1.8 交流阻抗及內部阻力之討論 71 4-1.9 電容表現分析 75 4-1.10 能量及功率表現 77 4-1.11 穩定性測試 83 4-1.12 結語 85 第五章 結論 87 參考文獻 89

    1. R. Kotz, M. Carlen, Electrochemica Acta, 45 (2000) 2483
    2. L. Bonnefoi, P. Simon, J.F. Fauvarque, C. Sarrazin, J.F. Sarrau, A. Dugast, J. Power Sources, 80 (1999) 149
    3. J.P. Zheng, T.R. Jow, J. Power Sources, 62 (1996) 155
    4. P. Simon and Y. Gogotsi, Nature Mater., 2008, 7, 845−854.
    5. T. Thomberg, A. Janes and E. Lust, Electrochim. Acta, 2010, 55,3138–3143.
    6. C. M. Ionica-Bousquet, W. J. Casteel, R. M. Pearlstein, G. GirishKumar, G. P. Pez, P. Gomez-Romero, M. R. Palacin and D. Munoz-Rojas, Electrochem. Commun., 2010, 12, 636–639.
    7. H. J. Liu, W. J. Cui, L. H. Jin, C. X. Wang and Y. Y. Xia, J. Mater. Chem., 2009, 19, 3661–3667.
    8. Naoi and Simon, ECS Interface, 17(1) (2008) 34.
    9. Miller and Simon, ECS Interface, 17(1) (2008) 31.
    10. Simon and Burke, ECS Interface, 17(1) (2008) 38.
    11. K. Kinoshita, Carbon: electrochemical and physicochemical properties, John Wiley & Sons, New York, 1988, 293
    12. B.E. Conway, Electrochemical supercapacitors scientific fundamentals and technological applications, Kluwer Academic, New York, 1999, 105
    13. T. Osaka, X. Liu, M. Nijima, T. Momma, J. Electrochem. Soc. 146 (1999) 1724
    14. S. Yoon, J. Lee, T. Hyeon, S.M. Oh, J. Electrochem. Soc. 147 (2000) 2507
    15. E. Frackowiak, F. Béguin, Carbon 39 (2001) 937
    16. M. Endo, T. Maeda, T. Takeda, Y.J. Kim, K. Koshibak, H. Hara, J. Electrochem. Soc. 148 (2001) A910
    17. C.T. Hsieh, H. Teng, Carbon 40 (2002) 667
    18. Y.R. Nian, H. Teng, J. Electrochem. Soc. 149 (2002) A1008
    19. D. Lozano-Castelló, D. Cazorla-Amorós, A. Linares-Solano, S. Shiraishi, H. Kurihara, A. Oya, Carbon 41 (2003) 1765
    20. Y. Soneda, M. Toyoda, K. Hashiya, J. Yamashita, M. Kodama, H. Hatori, Carbon 41 (2003) 2680
    21. C. Kim, S.H. Park, W.J. Lee, K.S. Yang, Electrochimica Acta 50 (2004) 877
    22. C. Kim, J.S. Kim, S.J. Kim, W.J. Lee, K.S. Yang, J. Electrochem. Soc. 151 (2004) A769
    23. C. Kim, J. Power Sources 142 (2005) 382
    24. H.Y. Liu, K.P. Wang, H. Teng, Carbon 43 (2005) 559
    25. C.S. Li, D.Z. Wang, X.F. Wang, J. Liang, Carbon 43 (2005) 1557
    26. K. Okajima, K. Ohta, M. Sudoh, Electrochim Acta 50 (2005) 2227
    27. K.P. Wang, H. Teng, Carbon 44 (2006) 3218
    28. C.S. Du, J. Yeh, N. Pan Nanotechnology 16 (2005) 350
    29. Y.Z. Wei, B. Fang, S. Iwasa, M. Kumagai, J. Power Sources 141 (2005) 386
    30. C.S. Du, N. Pan, Nanotechnology 17 (2006) 5314
    31. G.J. Lee, S.I. Pyun, Electrochimica Acta 51 (2006) 3029
    32. B. Fang, L. Binder, J. Power Sources 163 (2006) 616
    33. S.R.S. Prabaharan, R. Vimala, Z. Zainal, J. Power Sources 161 (2006) 730
    34. K.H. An, Y.H. Lee, J. Power Sources 173 (2007) 621
    35. B. Fang, L. Binder, Electrochimica Acta 52 (2007) 6916
    36. E. Frackowiak, K. Metenier, V. Bertagna, F. Béguin, Appl. Phys. Lett. 77 (2000) 2421
    37. E. Frackowiak, K. Jurewicz, S. Delpeux, F. Béguin, J. Power Sources 97–98 (2001) 822
    38. K.H. An, W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung, D.J. Bae, S.C. Lim, Y.H. Lee, Adv. Mater. 13 (2001) 497
    39. K.H. An, W.S. Kim, Y.S. Park, J.M. Moon, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Adv. Funct. Mater. 11 (2001) 387
    40. M. Hughes, M.S.P. Shaffer, A.C. Renouf, C. Singh, G.Z. Chen, J. Fray, A.H. Windle, Adv. Mater. 14 (2002) 382
    41. M. Hughes, G.Z. Chen, M.S.P. Shaffer, D.J. Fray, A.H. Windle, Chem. Mater. 14 (2002) 1610
    42. B.J. Yoon, S.H. Jeong, K.H. Lee, H.S. Kim, C.G. Park, J.H. Han, Chem. Phys. Lett. 388 (2004) 170
    43. H. Zhang, G. Cao, Y. Yang, Z. Gu, J. Electrochem. Soc. 155 (2008) K19
    44. Y. Piao, K. An, J. Kim, T. Yu, T. Hyeon, J. Mater. Chem. 16 (2006) 2984
    45. C.H. Wang, H.C. Shih , Y.T. Tsai, H.Y. Du, L.C. Chen, K.H. Chen, Electrochimica Acta 52 (2006) 1612
    46. F. Su, X. Li, L. Lv, X.S. Zhao, Carbon 44 (2006) 799
    47. N. Sonoyama, M. Ohshita, A. Nijubu, H. Nishikawa, H. Yanase, J.I. Hayashi, T. Chiba, Carbon 44 (2006) 1754
    48. H.L. Zhang, Y. Zhang, X.G. Zhang, F. Li, C. Liu, J. Tan, H.M. Cheng, Carbon 44 (2006) 2778
    49. J.M. Rosolen, E.Y. Matsubara, M.S. Marchesin, S.M. Lala, L.A. Montoro, S. Tronto, J. Power Sources 162 (2006) 620
    50. X.W. Chen, D.S. Su, S.B.A. Hamid, R. Schlögl, Carbon 45 (2007) 892
    51. S. Brunauer, The Adsorption of Gases and Vapor. Vol. 1, Physical Adsorption, Princeton University, Princeton, Now York, 1943
    52. J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angew. Chem. Int. Ed., 38, 56-77 (1999)
    53. A.H. Schoen, NASH Technical Note D-5541; NASH: Washington, DC, 1970
    54. M. Shao, Q. Li, J. Wu, B. Xie, S. Zhang, Y. Qian, Carbon 40 (2000) 2961
    55. W. Li, H. Zhang, C. Wang, Y. Zhang, L. Xu, K. Zhu, Appl. Phys. Lett. 70 (1997) 2684
    56. L. Liu, Y. Qin, Z.X. Guo, D. Zhu, Carbon 41 (2003) 331
    57. K.H. Liao, J.M. Ting, Carbon, 42 (2004) 509
    58. 蔡淑慧”拉曼光譜在奈米碳管檢測上之應用”, 奈米通訊, 第12卷第2期, 財團法人國家實驗研究院 (2005).
    59. H.D. Young, Physics, Addison-Wesley Publishing Co. :New York, 1992
    60. A.J. Bard, L.R. Faulkner, Electrochemical Principles, Methods, and Applications, Oxford University, Britain, 1996
    61. D. Qu, H. Shi, J. Power Sources 74 (1998) 99
    62. C.H. Hamann, A. Hamnett, W. Vielstich, Electrochemistry, Wiley-Vch :New York, (1998).
    63. J.S. Mattson, Jr. H.B. Mark, Activated Carbon : Surface Chemistry and Adsorption from Solution, Wiley-Vch :New York, 1998
    64. A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamental and Application, John Wiley & Sons, Canada, 1980
    65. R.D. Levie, Electrochim. Acta. 8 (1963) 751
    66. L.G. Austin, E.G.. Gagnon, J. Electrochem. Soc. 120 (1973) 251
    67. M. A. Lillo-R_odenas, D. Cazorla-Amor_os, A. Linares-Solano, F. B_eguin, C. Clinard and J. N. Rouzaud, Carbon, 2004, 42, 1305–1310.
    68. Yaming Wang, Jianyun Cao, Yu Zhou, Jia-Hu Ouyang, Dechang Jia, and Lixin Guo, Journal of The Electrochemical Society, 159 (5) A579-A583
    (2012)
    69. Yu-Kuei Hsu, Ying-Chu Chen, Yan-Gu Lin, Li-Chyong Chen, Kuei-Hsien Chen, J. Mater. Chem., 2012, 22, 3383.
    70. K. Jurewicz, E. Frackowiak, F. Béguin, Appl. Phys. A, 2004, 78, 981.
    71. N. A. Seaton, J. P. R. Walton and N. Quirke, Carbon, 1989, 42, 853–861.
    72. Z. Ryu, J. Zheng and M. Wang, Carbon, 1998, 36, 427–432.
    73. Cheng-Wei Huang, Chien-Te Hsieh, Ping-Lin Kuo, Hsisheng Teng, J. Mater. Chem., 2012, 22, 7314
    74. M. A. Lillo-R_odenas, D. Cazorla-Amor_os, A. Linares-Solano, F. Béguin, C. Clinard and J. N. Rouzaud, Carbon, 2004, 42, 1305–1310.
    75. C. W. Huang, C. H. Hsu, P. L. Kuo, C. T. Hsieh and H. Teng, Carbon, 2011, 49, 895–903.
    76. C. W. Huang and H. Teng, J. Electrochem. Soc., 2008, 155, A739–744.
    77. S. Yoon, S. M. Oh, C. W. Lee and J. H. Ryu, J. Electroanal. Chem., 2011, 650, 187–195.
    78. A.G. Volkov , S. Paula, D.W. Deamer, Bioelectrochemistry and Bioenergetics 42 (1997) 153-160
    79. Berrin Tansel , John Sager, Tony Rector, Jay Garland, Richard F. Strayer, Lanfang Levine, Michael Roberts, Mary Hummerick, Jan Bauer, Separation and Purification Technology 51 (2006) 40–47
    80. A.G. Pandolfo, A.F. Hollenkamp, Journal of Power Sources 157 (2006) 11–27
    81. H. C. Huang, C. W. Huang, C. T. Hsieh, P. L. Kuo, J. M. Ting and H. Teng, J.Phys. Chem. C, 2011, ,115, 20689−20695.
    82. N. Shimodaira, A. Masui, J. Appl. Phys. 92, 902 (2002)

    下載圖示 校內:2014-08-13公開
    校外:2014-08-13公開
    QR CODE