簡易檢索 / 詳目顯示

研究生: 葉惠婷
Yeh, Hui-Ting
論文名稱: TGF-β1誘導時間對於口腔鱗狀細胞癌表達基質金屬蛋白酶之影響
Expression level of MMPs in oral squamous-cell carcinoma with different times of TGF-β1 treatment
指導教授: 蕭世裕
Shaw, Shyh-Yu
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 62
中文關鍵詞: 口腔鱗狀細胞癌乙型轉型生長因子-1基質金屬蛋白酶
外文關鍵詞: SCC25, TGF-β1, MMP-2, MMP-9
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 先前實驗室發現強力黴素(Doxycycline, DOX)和強力黴素衍生物(TMC-1)可以抑制SCC15細胞之基質金屬蛋白酶MMP-2及MMP-9的表現。TGF-β1是一種多功能的免疫調節劑,癌症發生前,TGF-β1抑制腫瘤發展和生長以及促進細胞凋亡的方式來減緩癌細胞的增生,然而在腫瘤細胞中,TGF-β1會促進癌細胞生長及轉移,尤其較為後期的腫瘤組織中,往往有更大量的TGF-β1表現。本篇研究探討SCC25細胞受TGF-β1誘導的時間長短對MMPs的影響。由明膠蛋白酵素電泳的結果顯示,TGF-β1誘導5天時,MMP-2的表現量會是誘導1天時的3倍,而誘導1天至3天時,MMP-9的表現量相當少,誘導4天及5天時出現了明顯的表現。我們亦探討DOX、DOX衍生物(TMC-1)和茶籽萃取物(NCF)在SCC25受TGF-β1誘導1天及5天時抑制MMP-2及MMP-9的能力。經TGF-β1誘導1天時,DOX和TMC-1抑制MMP-2的IC50分別為6.879和2.146 μg/mL。誘導5天時,抑制MMP-2及MMP-9的IC50分別為4.623, 3.053 μg/mL及6.431, 3.585 μg/mL。此外,NCF經誘導1天及5天時,IC50為2868及251 μg/mL。TGF-β1誘導時間長時,NCF抑制MMP-2及MMP-9的效果更加顯著。總而言之,DOX、TMC-1和NCF皆能夠抑制SCC25細胞的MMP-2及MMP-9表現。

    Our previous studies have shown that Doxycycline (DOX) can inhibit the expression level of MMP-2 and MMP-9 in squamous-cell carcinoma cell line (SCC15) and the inhibition is possibly through TGF-β1/Smad signaling pathway. In this report, we used TGF-β1 to induce the expression of MMPs in SCC25 cells from 1 to 5 days and the expression level of MMPs in the culture medium were analyzed by gelatin zymography. Our results showed that MMP-2 was detected in Day 1 and it was gradually induced up to three fold in Day 5. On the other hand, MMP-9 was not detected before Day 3 and it was detected in Day 4 and 5. This result indicates that MMP-2 is the major MMPs in SCC-25 cell line and its expression can be induced by TGF-β1. In addition, MMP-9 is not detectable in SCC25 cell line but it was detectable after 4 days of TGF-β1 induction. We then tested if the expression level of MMP-2 and MMP-9 after 1 day and 5 days induction by TGF-β1 can be inhibited by DOX, DOX analogs (TMC-1), and non-catechin flavonoids (NCF) from Camellia sinensis (L.) O. Kuntze seed. Our results showed that both DOX and TMC-1 can inhibit the expression of MMP-2 in Day 1 with IC50 of 6.879 and 2.146 μg/mL and Day 5 with IC50 of 4.623 and 3.053 μg/mL. They can also inhibit the expression of MMP-9 in Day 5 with IC50 of 6.461 and 3.585 μg/mL. In addition, NCF was able to inhibit the expression of MMP-2 in Day 1 and Day 5 with IC50 of 2868 and 251 μg/mL. It is interesting to see the difference of IC50 in Day 1 and Day 5. In conclusion, MMP-2 is the major MMPs in SCC25, its expression level can be induced by TGF-β1 and inhibited by DOX, TMC-1 and NCF.

    中文摘要 I 英文摘要 II 致謝 XII 壹、緒論 1 一、 口腔鱗狀細胞癌 (Oral squamous cell carcinoma, OSCC) 1 1. 口腔鱗狀細胞癌的轉移 2 2. 口腔鱗狀細胞癌與基質金屬蛋白酶的關係 2 二、 基質金屬蛋白酶 (Matrix metalloproteinases,MMPs) 3 1. 基質金屬蛋白酶的功能 3 2. 基質金屬蛋白酶抑制劑 4 三、 細胞外基質(Extracellular matrix,ECM) 5 四、 乙型轉化生長因子(Transforming Growth Factor Beta, TGF-β) 5 1. TGF-β1 誘導時間及劑量與MMPs表現量的關係 6 2. 典型的TGF-β途徑——Smad路徑[28-29] 7 3. 非典型TGF-β途徑——Non-Smad路徑[29-30] 8 五、 四環黴素(Tetracycline) 9 1. 四環黴素的歷史 9 2. 四環黴素的抗生素性質(antibiotic properties) 10 3. 四環黴素的非抗生素性質(non-antibiotic properties) 10 4. 四環黴素的化學修飾 11 5. 強力黴素 11 六、 黃酮類化合物 (Flavonoid) 12 七、 明膠蛋白酵素電泳 (Gelatin zymography) 13 貳、研究目的 14 參、材料與方法 15 一、 DOX、TMC-1、NCF的合成及萃取 15 二、 細胞培養(Cell culture) 16 三、 細胞存活率分析(MTT assay) 19 四、 蛋白質樣品收集 20 五、 明膠蛋白酵素電泳(Gelatin zymography) 21 肆、研究結果 25 一、 化學修飾Doxycycline 25 二、 DOX、TMC-1及NCF對SCC-25細胞的毒性測試 25 三、 TGF-β1誘導時間長短對於SCC25細胞表現MMPs的影響 26 四、 DOX、TMC-1及NCF對SCC-25細胞抑制MMPs表現的效果 27 伍、研究討論 28 一、 DOX、TMC-1及NCF對SCC-25細胞的毒性測試 28 二、 TGF-β1誘導時間長短對於SCC25細胞表現MMPs的影響 28 三、 DOX、TMC-1及NCF對SCC-25細胞抑制MMPs表現的效果 29 陸、結論 31 柒、參考資料 32

    1. Clark, A. G.; Vignjevic, D. M., Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol 2015, 36, 13-22.

    2. Rowe, R. G.; Weiss, S. J., Breaching the basement membrane: who, when and how? Trends Cell Biol 2008, 18 (11), 560-574.

    3. Patel, B. P.; Shah, P. M.; Rawal, U. M.; Desai, A. A.; Shah, S. V.; Rawal, R. M.; Patel, P. S., Activation of MMP-2 and MMP-9 in patients with oral squamous cell carcinoma. J Surg Oncol 2005, 90 (2), 81-8.

    4. Gialeli, C.; Theocharis, A. D.; Karamanos, N. K., Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. The FEBS journal 2011, 278 (1), 16-27.

    5. Allam, E.; Zhang, W.; Al-Shibani, N.; Sun, J.; Labban, N.; Song, F.; Windsor, L. J., Effects of cigarette smoke condensate on oral squamous cell carcinoma cells. Arch Oral Biol 2011, 56 (10), 1154-61.

    6. Hsiao, Y. F.; Yang, L. C.; Chou, Y. S.; Ho, Y. P.; Lin, Y. C.; Ho, K. Y.; Wu, Y. M.; Tsai, C. C., Matrix metalloproteinase-2, -9, and tissue inhibitor of MMP-2 gene polymorphisms in Taiwanese periodontitis patients. J Dent Sci 2016, 11 (4), 411-418.

    7. Gross, J.; Lapiere, C. M., Collagenolytic activity in amphibian tissues. Proc Natl Acad Sci U S A 1962, 48 (6), 1014-1022.

    8. Eisen, A. Z.; Jeffrey, J. J.; Gross, J., Human skin collagenase. Isolation and mechanism of attack on the collagen molecule. Biochim Biophys Acta. 1968, 151 (3), 637-645.

    9. Dupont, E.; Falardeau, P.; Mousa, S. A.; Dimitriadou, V.; Pepin, M.; Wang, T.; Alaoui-Jamali, M. A., Antiangiogenic and antimetastatic properties of Neovastat (Æ-941), an orally active extract derived from cartilage tissue. Clinical & Experimental Metastasis 2002, 19, 145–153.
    10. Chen, L.; Zhang, H. Y., Cancer Preventive Mechanisms of the Green Tea Polyphenol (-)-Epigallocatechin-3-gallate. Molecules 2007, 12, 946-957.

    11. Kopustinskiene, D. M.; Jakstas, V.; Savickas, A.; Bernatoniene, J., Flavonoids as Anticancer Agents. Nutrients 2020, 12 (2).

    12. Chen, F. C.; Shen, K. P.; Ke, L. Y.; Lin, H. L.; Wu, C. C.; Shaw, S. Y., Flavonoids from Camellia sinensis (L.) O. Kuntze seed ameliorates TNF-alpha induced insulin resistance in HepG2 cells. Saudi Pharm J 2019, 27 (4), 507-516.

    13. Panche, A. N.; Diwan, A. D.; Chandra, S. R., Flavonoids: an overview. J Nutr Sci 2016, 5, e47.

    14. Saragusti, A. C.; Ortega, M. G.; Cabrera, J. L.; Estrin, D. A.; Marti, M. A.; Chiabrando, G. A., Inhibitory effect of quercetin on matrix metalloproteinase 9 activity molecular mechanism and structure-activity relationship of the flavonoid-enzyme interaction. Eur J Pharmacol 2010, 644 (1-3), 138-45.

    15. Haung, X.; Chen, S.; Xu, L.; Liu, Y.; Deb, D. K.; Platanias, L. C.; Bergen, R. C., Genistein Inhibits p38 Map Kinase Activation, Matrix Metalloproteinase Type 2, and Cell Invasion in Human Prostate Epithelial Cells. Cancer Res 2005, 65 (8), 3470-3478.

    16. Yue, B., Biology of the extracellular matrix: an overview. J Glaucoma 2014, 23 (8 Suppl 1), S20-3.

    17. Chin, D.; Boyle, G. M.; Parsons, P. G.; Coman, W. B., What is transforming growth factor-beta (TGF-beta)? Br J Plast Surg 2004, 57 (3), 215-21.

    18. Gilbert, R. W. D.; Vickaryous, M. K.; Viloria-Petit, A. M., Signalling by Transforming Growth Factor Beta Isoforms in Wound Healing and Tissue Regeneration. J Dev Biol 2016, 4 (2).

    19. Kalluri, R.; Weinberg, R. A., The basics of epithelial-mesenchymal transition. J Clin Invest 2009, 119 (6), 1420-8.

    20. Li, Y.; Kang, Y. S.; Dai, C.; Kiss, L. P.; Wen, X.; Liu, Y., Epithelial-to-mesenchymal transition is a potential pathway leading to podocyte dysfunction and proteinuria. Am J Pathol 2008, 172 (2), 299-308.

    21. Bai, X.; Li, Y. Y.; Zhang, H. Y.; Wang, F.; He, H. L.; Yao, J. C.; Liu, L.; Li, S. S., Role of matrix metalloproteinase-9 in transforming growth factor-beta1-induced epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Onco Targets Ther 2017, 10, 2837-2847.

    22. Sun, L., Transforming growth factor-β1 promotes matrix metalloproteinase- 9–mediated oral cancer invasion through snail expression. Molecular Cancer Research 2008, 6 (1), 10-20.

    23. Villar, V.; Kocic, J.; Santibanez, J. F., Skip regulates TGF-β1-induced extracellular matrix degrading proteases expression in human PC-3 prostate cancer cells. Prostate cancer 2013, 2013.

    24. Lei, H., The effects of genistein on transforming growth factor-β1-induced invasion and metastasis in human pancreatic cancer cell line Panc-1in vitro. Chinese medical journal 2012, 125 (11), 2032-2040.

    25. Wiercinska, E., The TGF-β/Smad pathway induces breast cancer cell invasion through the up-regulation of matrix metalloproteinase 2 and 9 in a spheroid invasion model system. Breast cancer research and treatment 2011, 128 (3), 657-666.

    26. Yen, C. L.; Li, Y. J.; Wu, H. H.; Weng, C. H.; Lee, C. C.; Chen, Y. C.; Chang, M. Y.; Yen, T. H.; Hsu, H. H.; Hung, C. C.; Yang, C. W.; Tian, Y. C., Stimulation of transforming growth factor-beta-1 and contact with type I collagen cooperatively facilitate irreversible transdifferentiation in proximal tubular cells. Biomed J 2016, 39 (1), 39-49.

    27. 方元君, The Study of the Inhibition of Matrix-metalloproteinase-2 in Pancreatic Cancer by Tetracycline Analogs. National Cheng Kung University 2017.

    28. Liu, S.; Chen, S.; Zeng, J., TGFbeta signaling: A complex role in tumorigenesis (Review). Mol Med Rep 2018, 17 (1), 699-704.

    29. Iyengar, P. V., Regulation of Ubiquitin Enzymes in the TGF-beta Pathway. Int J Mol Sci 2017, 18 (4).

    30. Zhang, Y. E., Non-Smad pathways in TGF-beta signaling. Cell Res 2009, 19 (1), 128-39.

    31. Verrecchia, F.; Mauviel, A., Transforming growth factor-beta signaling through the Smad pathway: role in extracellular matrix gene expression and regulation. J Invest Dermatol 2002, 118 (2), 211-5.

    32. Kim, H. S.; Luo, L.; Pflugfelder, S. C.; Li, D. Q., Doxycycline Inhibits TGF-β1–Induced MMP-9 via Smad and MAPK Pathways in Human Corneal Epithelial Cells. Investigative Ophthalmology & Visual Science 2005, 46 (3), 840-848.

    33. 張文馨, Expression and characterization of recombinant human Smad4. National Cheng Kung University 2015.

    34. 林志強, The study of suppression mechanism of MMP-9 expression level in oral squamous carcinoma cells by doxycycline. National Cheng Kung University 2013.

    35. Nguyen, F.; Starosta, A. L.; Arenz, S.; Sohmen, D.; Donhofer, A.; Wilson, D. N., Tetracycline antibiotics and resistance mechanisms. Biol Chem 2014, 395 (5), 559-75.

    36. Tan, K. R.; Magill, A. J.; Parise, M. E.; Arguin, P. M.; Centers for Disease, C.; Prevention, Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am J Trop Med Hyg 2011, 84 (4), 517-31.

    37. Pioletti, M., Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3. The EMBO journal 2001, 20 (8), 1829-1839
    .
    38. Chang, K. M.; Ramamurthy, N. S.; McNamara, T. F.; Evans, R. T.; Klausen, B.; Murray, P. A.; Golub, L. M., Tetracyclines inhibit Porphyromonas gingivalis-induced alveolar bone loss in rats by a non-antimicrobial mechanism. Journal of Periodontal Research 1994.

    39. Golub, L. M.; McNamara, T. F.; D'Angelo', G.; Greenwald2, R. A.; Ramamurthy, N. S., A Non-antibacterial Chemically-modified Tetracycline Inhibits Mammalian Collagenase Activity. J Dent Res 1987, 66 (8), 1310-1314.

    40. 廖靜洳, The study of the inhibition of Matrix-metalloproteinase-9 in oral squamous cell carcinoma by tetracycline analogs. 2017.

    41. Valentín, S.; Morales, A.; Sánchez, J. L.; Rivera, A., Safety and efficacy of doxycycline in the treatment of rosacea. Clinical, Cosmetic and Investigational Dermatology 2009, 2, 129-140.

    42. Toth, M.; Fridman, R., Assessment of Gelatinases (MMP-2 and MMP-9 by Gelatin Zymography. Methods Mol Med 2001, 57, 163-74.

    無法下載圖示 校內:2025-07-28公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE