簡易檢索 / 詳目顯示

研究生: 葉晉瑋
Yeh, Chin-wei
論文名稱: 探討microRNA生合成在癌化過程與腫瘤治療中扮演的角色
Study the role of microRNA biogenesis in tumorigenesis and tumor therapy
指導教授: 張文粲
Chang, Wen-Tsan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 123
中文關鍵詞: 腫瘤形成生合成微型核糖核酸
外文關鍵詞: biogenesis, microRNA, tumorigenesis
相關次數: 點閱:214下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • MicroRNAs (miRNAs)是一22個核苷酸、不會編碼出蛋白質的單股RNA,具有負向調控基因表現功能。miRNAs調控基因表現的機制與RNAi類似,成熟的miRNAs為一小片段的單股RNA,藉由結合至RISC複合體可以去辨認與其序列互補的標的mRNA,依據與標的mRNA完全互補與否,而有將標的mRNA降解或阻擋蛋白質轉譯的二種機制。近期很多報導指出miRNAs參與了腫瘤形成的過程,由於miRNAs調控的基因包含了細胞生長、爬行能力、入侵能力等,因此,當miRNAs表現失衡時將會大大地影響細胞的行為,甚至導致腫瘤形成的發生。很多研究報告指出特定的miRNAs在特定的腫瘤細胞中扮演重要角色,例如:miR-221與miR-222會負向調控p27Kip1而促進PC3前列腺癌細胞增生,因此,如果將miR-221與miR-222的表現抑制掉或是降低,就可以造成PC3細胞的增生減緩。基於這個想法,如果能夠將miRNAs生合成抑制,就可以影響受miRNAs高度調控的腫瘤細胞,有機會能夠作為一種腫瘤治療的方式,並且抑制miRNAs生合成是非專一性地影響miRNAs熟成,將有助於應用於多種類的腫瘤細胞。首先,建立持續沈默Drosha表現的HeLa細胞株用以觀察影響HeLa細胞中miRNAs生合成路徑對其造成的影響,實驗結果發現在HeLa細胞中持續降低其miRNAs生合成並不會造成其顯著改變,包含了細胞生長、細胞爬行能力、侵襲能力以及F-actin形成。之後選擇建立持續沈默Drosha表現的PC3前列腺癌細胞株,實驗結果顯示持續降低PC3細胞的miRNAs生合成活性會導致細胞生長減緩、細胞爬行及侵入能力顯著降低。隨後設計miRNAs生合成中的另外二個關鍵酵素的shRNA,為shDGCR8以及shXPO5。將miRNAs生合成過程中三個關鍵酵素的shRNA串連後轉染HeLa細胞,實驗結果顯示同時抑制這三個miRNAs生合成關鍵酵素不會造成HeLa細胞的死亡或巨大影響。在另一部份的研究主題中,冷光基因融合載體的分析方式可以很快速地且大量地篩選持續沈默特定基因的細胞株,在篩選持續沈默Drosha表現的PC3細胞、持續沈默HDM2的PC3細胞以及持續沈默IDH3A的HeLa細胞的實驗中,都印證了利用冷光基因的表現情形即可挑選出持續沈默特定基因的細胞株,經由西方墨點法分析也都確認了挑選出來的細胞株有持續沈默特定基因。這個實驗結果將有助於快速地篩選大量的細胞株,兼具省時以及省錢的優點。

    MicroRNAs (miRNAs) are an abundant class of small non-protein-coding RNAs that function as negative gene regulators. MiRNAs negatively regulate their target mRNA in one of two ways depending on the degree of complementarity between the miRNAs and their targets. The researchers are just beginning to understand how this novel class of gene regulators is involved in cancer-related-process in humans. Cancer is caused by uncontrolled proliferation and the inappropriate survival of damaged cells, which results in tumor formation. Out of hundreds of miRNAs that have recently been identified, only a small number of human genomes have been characterized. They have been shown to control cell growth, differentiation and apoptosis; consequently, impaired miRNAs expression has been implicated in tumorigenesis. Recently evidence indicates that patterns of misexpression of miRNAs in cancer suggest key functions of miRNAs in tumorigenesis. For example, deregulated expression of miR-221&222 promotes cancerous growth by inhibiting the expression of p27Kip1. If the expression of miR-221&222 were repressed, the cancerous growth should been decreased. Based on the idea, repressing the expression of miRNAs might be an effective approach to block tumour progression. In my study, I established stable Drosha knock-down HeLa cells to study the impact of Drosha knockdown on the cell growth, migration, invasive activity. Unfortunately, stable-knockdown HeLa cells have not revealed the difference with wild type HeLa cells between in cell growth, cell migration, invasive activity and F-actin expression. Afterwards I established stable Drosha knock-down PC3 cells to analyze the above experiments, observing that stable-knockdown Drosha in PC3 cells leaded to repress cell growth, cell migration and invasive activity. Furthermore, I constructed the multiple shRNAs expression vectors for simultaneous inhibition of Drosha, DGCR8 and XPO5. HeLa cells which transfected with the multiple shRNAs expression vectors didn’t cause cell death or serious effect. On the other hand, I developed a method to rapidly screen stable-knockdown cells based on the luciferase activity. This method will be helpful to providing fast and massive cells screening.

    目錄……………………………………………………………………2 中文摘要………………………………………………………………8 英文摘要………………………………………………………………10 縮寫表…………………………………………………………………12 第一章 序論 1-1 微型核糖核酸與核苷酸干擾技術………………………………13 1-2 微型核糖核酸的生成……………………………………………14 1-3 miRNAs是一大類的基因表現調控因子…………………………14 1-4 miRNAs調節多個標的基因………………………………………15 1-5 miRNAs與生長、分化和疾病的關係……………………………16 1-6 與癌症有關的miRNAs……………………………………………16 2-1 核糖核酸干擾現象………………………………………………17 2-2 核糖核酸干擾的機制……………………………………………18 2-3 核糖核酸干擾在哺乳類動物細胞中的應用……………………19 2-4 核糖核酸干擾的應用……………………………………………21 3-1 研究動機…………………………………………………………24 第二章 實驗材料與方法 A.實驗材料……………………………………………………………25 A-1 勝任細胞株………………………………………………………25 A-2 限制酶……………………………………………………………25 A-3 各種細胞株………………………………………………………25 A-4 化學藥品…………………………………………………………25 A-5 試劑………………………………………………………………28 A-6 抗體………………………………………………………………28 A-7 培養液……………………………………………………………29 A-8 細菌用的培養基-LBA plate……………………………………30 A-9 緩衝液……………………………………………………………30 A-10各種試劑配製……………………………………………………35 A-11勝任細胞之製備…………………………………………………37 A-12儀器設備…………………………………………………………37 B.方法…………………………………………………………………38 B-1 細胞的培養程序…………………………………………………38 B-2 基本分子生物技術………………………………………………40 B-3 細胞相關實驗……………………………………………………46 (1) 短暫性轉染…………………………………………………46 (2) 雙重冷光基因活性的測定…………………………………46 (3) 蛋白質定量…………………………………………………47 (4) 西方墨點法…………………………………………………47 (5) 觀察細胞之螢光表現………………………………………49 (6) 免疫螢光染色分析…………………………………………49 (7) 建立持續表現Hyg基因及shDro的穩定細胞株……………50 (8) MTT cell proliferation assay細胞增殖分析…………50 (9) Boyden chamber cell migration assay ………………51 (10) Transwell Invasion Assay 細胞侵襲分析……………52 (11) BrdU incorporation assay 溴脫氧尿核甘混合試……52 (12) Soft agar colony formation assay 軟洋菜膠細胞集落 形………53 (13) Wound healing cell migration assay 傷口癒合細胞爬行分……54 第三章 實驗結果 3-1 Drosha的表現情形及表現位置…………………………………55 3-2 利用siRNA評估系統篩選出有效的siDro進而合成shDro………55 3-3 建立持續性沈默Drosha表現的HeLa細胞株……………………55 3-4 分析持續性沈默Drosha表現的穩定株其生長速率、細胞爬行能力、細胞侵襲能力與野生型HeLa細胞的差異………………………56 3-5 分析持續性沈默Drosha表現對細胞F-actin形成的影響………57 3-6 分析持續性沈默Drosha表現對細胞能量代謝的影響…………57 3-7 建立持續性沈默Drosha表現的PC3細胞株………………………58 3-8 分析持續性沈默Drosha的穩定株其生長速率、細胞爬行能力、細胞侵襲能力與野生型PC3細胞的差異………………………………58 3-9 利用siRNA評估系統篩選出有效的siDGCR8進而合成shDGCR8…59 3-10利用siRNA評估系統篩選出有效的siXPO5進而合成shXPO5……60 3-11構築多重性shRNA表現質體………………………………………61 3-12利用冷光基因融合載體篩選持續性沈默基因的細胞株………62 第四章 討論 4-1在HeLa細胞中持續性沈默Drosha的效應…………………………64 4-2在PC3細胞中持續性沈默Drosha的效應…………………………64 4-3以冷光基因的表現情形來挑選穩定基因沈默株…………………66 第五章 參考文獻………………………………………………………………67 第六章 實驗結果圖表………………………………………………73

    Abrahante, J. E. et al. (2003) The Caenorhabditis elegans hunchback-like gene lin-57/hbl-1 controls developmental time and is regulated by microRNAs. Dev. Cell 4, 625-637.
    Bentwich, I. et al. (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genet. 37, 766-770.
    Berezikov, E. et al. (2005) Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21-24.
    Borkhardt A.(2002) Blocking oncogenes in malignant cells by RNA interference — new hope for a highly specific cancer treatment ? Cancer Cell 2(3), 167-168.
    Brennecke, J., Hipfner, D. R., Stark, A., Russell, R. B.
    & Cohen, S. M. (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25-36.
    Brummelkamp TR, Bernards R, Agami RA, et al.(2002) System for stable expression of short interfering RNAs in mammalian cells. Science 296(5567), 550-553.
    Calin, G. A. et al. (2002) Frequent deletions and downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. USA 99, 15524-15529.
    Calin, G. A. et al. (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl Acad. Sci. USA 101, 2999-3004.
    Carlos le Sage et al.(2007) Regulation of the p27Kip1 tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. The EMBO Journal 26, 3699-3708.
    Carmichael G G. (2002) Medicine : silencing viruses with RNA. Nature 418(6896), 379-380.
    Chang, S., Johnston, R. J. Jr, Frokjaer-Jensen, C., Lockery, S. & Hobert, O. (2004) MicroRNAs act sequentially and asymmetrically to control chemosensory laterality in the nematode. Nature 430, 785-789.
    Chen, C. Z., Li, L., Lodish, H. F. & Bartel, D. P. (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83-86.
    Cheng, A. M., Byrom, M. W., Shelton, J. & Ford, L. P. (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 33, 1290-1297.
    Cimmino, A. et al. (2005) miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl Acad. Sci. USA 102, 13944-13949.
    Elbashir SM, Harborth J, Weber K, et al.(2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs.Methods 26(2), 199-213.
    Elbashir SM, Harborth J, Lendeckel W, et al.(2001) Duplexes of 21 - nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836), 494-498.
    Esau, C. et al. (2004) MicroRNA-143 regulates adipocyte differentiation. J. Biol. Chem. 279, 52361-52365.
    Fire A, Xu S. Q., Montgomery M.K., Kostas S. A., Driver S. E., and Mello C.C.(1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811.
    Gerda Egger, Gangning Liang, Ana Aparicio & Peter A. Jones.(2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429, 457-464.
    Giraldez, A. J. et al. (2005) MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833-838.
    Grosshans, H., Johnson, T., Reinert, K. L., Gerstein, M.& Slack, F. J. (2005) The temporal patterning microRNA let-7 regulates several transcription factors at the larval to adult transition in C. elegans. Dev. Cell 8, 321-330.
    Hannon GJ .(2002) RNA interference. Nature 418(6894), 244-251.
    Harborth J , Elbashir SM , Bechert K, et al. (2001) Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 114(24), 4557-4565.
    Hornstein, E. et al. (2005) The microRNA miR-196 acts upstream of Hoxb8 and Shh in limb development.Nature 438, 671-674.
    Iorio, M. V. et al. (2005) MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 65, 7065-7070.
    Jacque JM, Triques K, Stevenson M.(2002) Modulation of HIV21 replication by RNA interference. Nature 418(6896), 435-438.
    Jeong-Won Lee, et al.(2008) Altered microRNA expression in cervical carcinomas. Clin Cancer Res 14(9), 2535-2542.
    Johnson, S. M. et al. (2005) RAS is regulated by the let-7 microRNA family. Cell 120, 635-647.
    Johnston, R. J. & Hobert, O.(2003) A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845-849.
    Kitabwalla M, Ruprecht RM.(2002) RNA interference — a new weapon
    Khvorova, A., Reynolds, A. & Jayasena, S. D. (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-216.
    Krek, A. et al. (2005) Combinatorial microRNA target predictions. Nature Genet. 37, 495-500.
    Krichevsky AM , Kosik K S. (2002) RNAi functions in cultured mammalian neurons. Proc Natl Acad Sci USA 99(18), 11926-11929.
    against HIV and beyond. N Engl J Med 347(17), 1364-1367.
    Lee NS, Dohhjima T, Bauer G, et al.(2002) Expression of small interfering RNAs targeted against HIV21 rev transcripts in human cells. Nat Biotechnol 20(19), 500-505.
    Lee, R. C., Feinbaum, R. L. & Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.
    Lin, S. Y. et al. (2003) The C elegans hunchback homolog, hbl-1, controls temporal patterning and is a probable microRNA target. Dev. Cell 4, 639-650.
    Liu, C. G. et al. (2004) An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc. Natl Acad. Sci. USA 101, 9740-9744.
    Marcos Malumbres et al.(2004) Mammalian Cells Cycle without the D-Type Cyclin-Dependent Kinases Cdk4 and Cdk6. Cell 118, 493-503.
    Martinez MA, Clotet B, Este J A.(2002) RNA interference of HIV replication. Trends Immunol 23(12), 559-561.
    McCaffrey AP , Meuse L , Pham TT , et al .(2002) RNA interference in adult mice. Nature 418 (6893), 38-39.
    McManus MT , Sharp P A.(2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3(10), 737-747.
    Michael, M. Z., O’Connor, S. M., van Holst Pellekaan, N. G., Young, G. P. & James, R. J. (2003) Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res.1, 882-891.
    Napoli C., Lemieux C., and Jorgensen R.(1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2, 279-289.
    Novina CD, Murray MF, Dykxhoorn DM, et al.(2002) siRNA - directed inhibition of HIV21 infection. Nat Med 8(7), 681-686.
    Paddison PJ , Caudy AA , Bernstein E , et al . (2002) Short hairpin RNAs (shRNAs) induce sequence 2 specific silencing in mammalian cells. Genes Dev. 16(8), 948-958.
    Pillai, R. S. et al. (2005) Inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573-1576.
    Poy, M. N. et al. (2004) A pancreatic islet-specific microRNA regulates insulin secretion. Nature 432, 226-230.
    Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. (2004) Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507-1517.
    Reinhart, B. et al. (2000) The 21 nucleotide let-7 RNA regulates C. elegans developmental timing. Nature 403, 901-906.
    Scherr M, Battmer K, Winkler T, et al.(2003) Specific inhibition of bcrabl gene expression by small interfering RNA. Blood 101(4), 1566-1569.
    Schwarz, D. S. et al. (2003) Asymmetry in the assembly of the
    RNAi enzyme complex. Cell 115, 199-208.
    Tang, G., Reinhart, B. J., Bartel, D. P. & Zamore, P. D.(2003) A biochemical framework for RNA silencing in plants.Genes Dev.17, 49-63.
    Takamizawa, J. et al. (2004) Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 64, 3753-3756.
    Tuschl T. Expanding small RNA interference. Nat Biotechnol 20 (5), 446-468.
    Yekta, S., Shih, I. H. & Bartel, D. P.(2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596.

    下載圖示 校內:2013-08-25公開
    校外:2013-08-25公開
    QR CODE