| 研究生: |
徐弘峻 Hsu, Hung-Chun |
|---|---|
| 論文名稱: |
利用染色分解針對多來源H&E染色切片之細胞核分割 Using Stain Decomposition for Nucleus Segmentation on Multi-source H&E Slide Images |
| 指導教授: |
詹寶珠
Chung, Pau-Choo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 染色分解 、細胞核分割 、H&E染色多樣性 |
| 外文關鍵詞: | Stain Decomposition, Nucleus Segmentation, H&E Stain Variation |
| 相關次數: | 點閱:65 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
深度學習技術因其速度快和相對客觀的結果而被廣泛用於病理切片分析。 針對切片中的細胞核進行實例分割可以為診斷流程提供許多有用的參數,以協助並加速病理學家的診斷過程。蘇木精和曙紅染色(H&E)通常用於病理組織切片,分別以藍紫色與粉紅色強調了細胞核及細胞質,並以此進一步觀察細胞的行為和結構資訊。但是在現實世界的案例中,細胞核染色時顏色的特徵變化很大,通常取決於所使用的染料品質和染色流程,以及用於掃描數位切片的系統。因此,本研究提出一個可以連接在任意神經網絡前方的輕量級模組,以降低因染色程序差異和掃描環境不同而造成的變化導致的負面結果,進而提供更穩定的影像分割結果。值得注意的是,本研究提出的模組提高了針對沒見過的染色類型的分割性能,因此可以使擴展其實際應用的範圍。在現實案例應用中,切片可能是從多家醫院和實驗室收集而來,因此具有相當程度的染色多樣性。通過以過度的色彩增強下產生的人工染色切片影像進行的壓力測試,可以評估提出的模組之可行性。實驗結果表明,所提出的模塊可以減輕組織玻片的顏色差異造成的效能影響,並更好地協助病理學家進行相關診斷,加速分析流程。
The deep learning technique is widely used for whole slide image (WSI) analysis due to its speed and relatively objective results. Nucleus instance segmentation, in which the nuclei in the WSI are individually identified, can provide many useful parameters to assist and accelerate the diagnosis process for pathologists. Hematoxylin and eosin stain (H&E stain) is commonly used on pathology tissue slides to observe the behavior and structure information of cells. However, the color-oriented features of the nuclei vary widely depending on the particular die and staining protocol employed and also the scanning system used to obtain the digital WSIs. Accordingly, the proposed lightweight network module attached to the front of an arbitrary network can provide a more robust segmentation performance irrespective of staining protocols employed and scanning circumstances. Notably, the proposed module improves the performance for unseen color-oriented features and thus can benefit the real-world applications, where the WSIs may be collected from multiple hospitals and laboratories. The feasibility of the proposed module is evaluated by testing the network performance on immoderately color augmented input images. The experiment result shows that the proposed module can alleviate the color variance of the tissue slides and better assist the pathology for the related diagnosis.
[1] Wikipedia contributors. Kmeans clustering — Wikipedia, the free encyclopedia, 2020.
[2] Simon Graham, Quoc Dang Vu, Shan e Ahmed Raza, Jin Tae Kwak, and Nasir M. Rajpoot. XY network for nuclear segmentation in multitissue histology images. CoRR, 2018.
[3] Freddie Bray, Jacques Ferlay, Isabelle Soerjomataram, Rebecca L. Siegel, Lindsey A.Torre, and Ahmedin Jemal. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2018.
[4] American Cancer Society, Atlanta, Georgia. Cancer facts & figures 2020, 2020.
[5] Wikipedia contributors. Multilayer perceptron — Wikipedia, the free encyclopedia, 2020.
[6] Farnoosh Sadeghian, Zainina Seman, Abdul Ramli, Badrul Kahar, and M Iqbal Saripan. A framework for white blood cell segmentation in microscopic blood images using digital image processing. Biological procedures online, 2009.
[7] T. Tanaka, T. Joke, and T. Oka. Cell nucleus segmentation of skin tumor using image processing. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2001.
[8] Michael Kass, Andrew Witkin, and Demetri Terzopoulos. Snakes: Active contour models. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1988.
[9] Wikipedia contributors. Otsu’s method — Wikipedia, the free encyclopedia, 2020.
[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. Curran Associates, Inc., 2012.
[11] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks for semantic segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017.
[12] Wikipedia contributors. Sobel operator — Wikipedia, the free encyclopedia, 2020.
[13] Hao Chen, Xiaojuan Qi, Lequan Yu, and PhengAnn Heng. DCAN: deep contouraware networks for accurate gland segmentation. CoRR, 2016.
[14] H. Wang, M. Xian, and A. Vakanski. Bending loss regularized network for nuclei segmentation in histopathology images. In 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), 2020.
[15] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. Unet: Convolutional networks for biomedical image segmentation. CoRR, 2015.
[16] D. Zhang, Y. Song, S. Liu, D. Feng, Y. Wang, and W. Cai. Nuclei instance segmentation with dual contourenhanced adversarial network. In 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018.
[17] Maxime W. Lafarge, Josien P. W. Pluim, Koen A. J. Eppenhof, and Mitko Veta. Learning domaininvariant representations of histological images. Frontiers in Medicine, 2019.
[18] N. Kumar, R. Verma, D. Anand, Y. Zhou, O. F. Onder, E. Tsougenis, H. Chen, P. Heng, J. Li, Z. Hu, Y. Wang, N. A. Koohbanani, M. Jahanifar, N. Z. Tajeddin, A. Gooya, N. Rajpoot, X. Ren, S. Zhou, Q. Wang, D. Shen, C. Yang, C. Weng, W. Yu, C. Yeh, S. Yang, S. Xu, P. H. Yeung, P. Sun, A. Mahbod, G. Schaefer, I. Ellinger, R. Ecker, O. Smedby, C. Wang, B. Chidester, T. Ton, M. Tran, J. Ma, M. N. Do, S. Graham, Q. D. Vu, J. T. Kwak, A. Gunda, R. Chunduri, C. Hu, X. Zhou, D. Lotfi, R. Safdari, A. Kascenas, A. O'Neil, D. Eschweiler, J. Stegmaier, Y. Cui, B. Yin, K. Chen, X. Tian, P. Gruening, E. Barth, E. Arbel, I. Remer, A. BenDor, E. irazitdinova, M. Kohl, S. Braunewell, Y. Li, X. Xie, L. Shen, J. Ma, K. D. Baksi, M. A. Khan, J. Choo, A. Colomer, V. Naranjo, L. Pei, K. M. Iftekharuddin, K. Roy, D. Bhattacharjee, A. Pedraza, M. G. Bueno, S. Devanathan, S. Radhakrishnan, P. Koduganty, Z. Wu, G. Cai, X. Liu, Y. Wang, and A. Sethi. A multiorgan nucleus segmentation challenge. IEEE Transactions on Medical Imaging, 2020.
[19] Wikipedia contributors. Tdistributed stochastic neighbor embedding — Wikipedia, the free encyclopedia, 2020.
[20] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, and Victor S. Lempitsky. Domainadversarial training of neural networks. J. Mach. Learn. Res., 2016.
[21] Erik Reinhard, Michael Ashikhmin, Bruce Gooch, and Peter Shirley. Color transfer between images. IEEE Comput. Graph. Appl., 2001.
[22] Pinky Bautista and Yukako Yagi. Staining correction in digital pathology by utilizing a dye amount table. Journal of digital imaging, 2015.
[23] H. Sebastian Seung Daniel D. Lee. Learning the parts of objects by nonnegative matrix factorization. In Nature 401, 1999.
[24] Andrew Rabinovich, Sameer Agarwal, Casey Laris, Jeffrey H. Price, and Serge J. Belongie. Unsupervised color decomposition of histologically stained tissue samples. MIT Press, 2004.
[25] Nicholas Trahearn, David Snead, Ian Cree, and Nasir Rajpoot. Multiclass stain separation using independent component analysis. SPIE, 2015.
[26] M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley, Xiaojun Guan, C. Schmitt, and N. E. Thomas. A method for normalizing histology slides for quantitative analysis. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009.
[27] N. HidalgoGavira, J. Mateos, M. Vega, R. Molina, and A. K. Katsaggelos. Blind color deconvolution of histopathological images using a variational bayesian approach. In 2018 25th IEEE International Conference on Image Processing (ICIP), 2018.
[28] A. Vahadane, T. Peng, A. Sethi, S. Albarqouni, L. Wang, M. Baust, K. Steiger, A. M. Schlitter, I. Esposito, and N. Navab. Structurepreserving color normalization and sparse stain separation for histological images. IEEE Transactions on Medical Imaging, 2016.
[29] M. Aharon, M. Elad, and A. Bruckstein. Ksvd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006.
[30] Peter Byfield. Staintools, 2019.
[31] Elizabeth Chlipala, Christine M. Bendzinski, Kevin Chu, Joshua I. Johnson, Miles Brous, Karen Copeland, and Brad Bolon. Optical densitybased image analysis method for the evaluation of hematoxylin and eosin staining precision. Journal of Histotechnology, 2020.
[32] Wikipedia contributors. Beer–lambert law — Wikipedia, the free encyclopedia, 2020.
[33] Abhishek Vahadane, Tingying Peng, Amit Sethi, Shadi Albarqouni, Lichao Wang, Maximilian Baust, Katja Steiger, Anna Schlitter, Irene Esposito, and Nassir Navab. Structurepreserving color normalization and sparse stain separation for histological images. IEEE Transactions on Medical Imaging, 2016.
[34] M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley, Xiaojun Guan, C. Schmitt, and N. E. Thomas. A method for normalizing histology slides for quantitative analysis. In 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 2009.
[35] Neeraj Kumar, Ruchika Verma, Sanuj Sharma, Surabhi Bhargava, Abhishek Vahadane, and Amit Sethi. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Transactions on Medical Imaging, 2017.
[36] N. Kumar, R. Verma, S. Sharma, S. Bhargava, A. Vahadane, and A. Sethi. A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Transactions on Medical Imaging, 2017.
校內:2025-10-12公開