| 研究生: |
郭芊沛 Kuo, Chien-Pei |
|---|---|
| 論文名稱: |
標準化詮釋資料之於數位孿生多元地理空間資源之應用 Standardized metadata towards the applications of multiple types of geospatial resources in digital twins |
| 指導教授: |
洪榮宏
Hong, Jung-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 測量及空間資訊學系 Department of Geomatics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 215 |
| 中文關鍵詞: | 詮釋資料 、數位孿生 、多維地理資源 、動態地理資源 |
| 外文關鍵詞: | Metadata, Digital Twin, Multi-dimensional Geospatial Resources, Dynamic Geospatial Resources |
| 相關次數: | 點閱:49 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著智慧城市建設及數位孿生(Digital Twin)技術的快速推進,地理資料與服務資源在決策支援、城市治理、基礎設施管理等領域的重要性日益提升。特別是在都市發展、環境監測、交通管理與公共安全等應用場景中,精確而即時的空間資訊成為推動智慧應用的核心要素。然而,隨著資料來源與型態的多樣化,包括傳統的二維資料(2D)、高精度三維模型(3D)乃至於涵蓋時間變化的四維資料(4D),結合物聯網之動態地理資源、服務與API等網路資源,資訊的管理、分享與應用面臨著更高的複雜性。為因應跨領域資料整合、即時更新與資源重用之需求,標準化且結構化的詮釋資料建構,成為提升跨域資源搜尋效率、判斷資料適用性及支持資源正確運用之重要基礎及必要條件。尤其以數位孿生這類必須涵蓋多元領域、包含時空面向及持續更新之資料機制而言,透過妥善設計的詮釋資料機制,數位孿生系統得以有效銜接現實世界與虛擬模型,提升系統運作效能,並加速智慧城市相關應用之落實。
目前既有的地理資源詮釋資料設計,多以靜態描述為主,未能充分回應多維資料結構與即時更新需求,亦未針對不同資源型態(如資料集、影像、API服務)提出細緻而適用性導向之設計。尤其當數位孿生系統需要整合大量異質資料源,並進行動態分析與決策支援時,傳統詮釋資料體系很容易因設定對象過於保守、描述資訊內容不足或缺乏統一格式而產生資源選取錯誤、整合困難及應用受限等問題。本研究認為數位孿生系統之詮釋資料必須滿足其操作之特性,至少同時支持資源發現(Resource discovery)、資源管理(Management)及適用性評估(Fitness for use)等多重功能的標準化框架,使得地理資訊在智慧應用、跨域整合及數位孿生技術推展過程中,以其將其後續之應用延伸至互操作應用層面。且此架構應以符合國際詮釋資料標準之方式設計與建立,以符合開放及跨域之國際接軌優勢。。
本研究以ISO 19115國際標準為基礎,參考Dublin Core與Open API等設計原則,採用子標準(Profile)設計概念,發展一套針對地理資料、圖徵、遙測影像(RS Imagery)、Coverage(通用網格)及API服務資源之詮釋資料架構。研究過程中,除依功能需求設計納入之項目及規劃記錄內容之配套外,並結合目前高度討論之FAIR(Findable, Accessible, Interoperable, Reusable)原則進行設計與驗證。子標準之設計將以符合數位孿生之需求觀點切入,涵蓋不同種類資源之特色,分析共通性與特殊性項目,以支援不同維度資料在數位孿生應用中的一致性與可用性,終極目標為完成一套兼顧多維資料、即時更新與跨域應用需求之標準化詮釋資料框架。該框架能有效支援多樣化地理資源的描述與分類管理,並能明確記錄資源之適用性條件,避免在資源整合或應用過程中發生錯誤引用的情形。此外,設計中納入整合式資源搜尋與篩選功能,讓使用者能依據特定條件迅速找到符合需求的資料、影像或服務,進一步提升數據利用效率。本研究所建構之詮釋資料設計,亦能滿足我國目前地理空間資料平台之發展需求,以實務應用於我國之地理資源分享環境
本研究已初步完成以 Profile 設計為核心的詮釋資料標準化框架,目前成果主要聚焦於建立基本之描述結構,對於實際應用中資料與服務資源的操作流程、平台整合與跨系統相容性等層面仍有進一步探討空間。未來將持續深化於詮釋資料於不同數位孿生場域中之實作測試,包含樣版設計與內容自動化建立、跨系統資料目錄架構與支援圖徵重複使用等操作性問題,仍須進一步驗證詮釋資料設計於多元應用架構下之擴充性,並逐步推展至即時資料整合與語意一致性驗證等進階議題。
The rapid advancement of smart cities and digital twin technologies has heightened the importance of geographic data and service resources in decision support, urban governance, infrastructure management, and related domains. Accurate and real-time spatial information is critical for applications such as urban development, environmental monitoring, traffic management, and public safety. Yet, the increasing diversity of data sources—including 2D datasets, high-precision 3D models, spatiotemporal 4D data, and dynamic Internet of Things–enabled services—has introduced significant challenges in data management, sharing, and utilization. Addressing cross-domain integration, real-time updates, and resource reuse requires standardized and structured metadata mechanisms to improve resource discovery, assess fitness for use, and ensure proper application.
This study proposes a profile-based metadata framework grounded in ISO 19115, complemented by principles from Dublin Core, OpenAPI, and the FAIR guidelines (Findable, Accessible, Interoperable, Reusable). The framework accommodates diverse resources such as geographic datasets, features, remote sensing imagery, coverage data, and API services. By identifying both commonalities and resource-specific characteristics, the framework ensures consistency, usability, and interoperability across multi-dimensional data in digital twin applications. Key features include structured descriptions, explicit documentation of fitness-for-use conditions, and integrated search and filtering functions to enhance data discovery and utilization.
Preliminary results focus on establishing the basic descriptive structures, while future work will extend towards operational workflows, platform integration, cross-system interoperability, and advanced topics such as real-time data assimilation and semantic consistency validation. This framework not only supports the evolving requirements of digital twins but also addresses practical needs for geospatial data-sharing platforms, with implications for smart city implementations in Taiwan and beyond.
1. 內政部國土測繪中心(2021)。《三維地理資料標準設計參考手冊》。內政部國土測繪中心。
2. 內政部國土測繪中心(2023)。台灣空間詮釋資料標準(TWSMP)版本2.0 作業手冊。內政部國土測繪中心。
3. Al-Hader, M., & Rodzi, A. (2009). Smart city components architecture. Journal of Engineering Science and Technology, 4(1), 234–240.
4. ANZLIC. (2011). ANZLIC Metadata Profile v1.1.
5. Barricelli, B. R., Casiraghi, E., & Fogli, D. (2019). A survey on digital twin: Definitions, characteristics, applications, and design implications. IEEE Access, 7, 167653–167671
6. Bartolozzi, I., Felici, A., Giansanti, P., & Mazzetti, P. (2015). A smart decision support system for smart city. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 6(4), 19–36. https://doi.org/10.4018/IJAEIS.2015100102
7. Bastrakova, I., Lewis, A., & Car, N. (2018). Geoscience Australia community metadata profile of ISO 19115-1:2014—Implementation guidance. Geoscience Australia.
8. Batty, M. (2018). Digital twins. Environment and Planning B: Urban Analytics and City Science, 45(3), 395–396.
9. Behr, F. J. (2023). OGC API – Next Gen Standards for Web-based Geospatial Data Provision. gis.Science–Die Zeitschrift für Geoinformatik, 2, 54–61.
10. Bhati, A., Hansen, M., & Chan, C. M. L. (2017). Energy conservation through smart homes in a smart city: A lesson for Singapore households. Energy Policy, 104, 230–239. https://doi.org/10.1016/j.enpol.2017.01.033
11. Bibri, S. E., Alexandre, A., Sharifi, A., & Krogstie, J. (2023). Environmentally sustainable smart cities and their converging AI, IoT, and big data technologies and solutions: an integrated approach to an extensive literature review. Energy informatics, 6(1), 9. https://doi.org/10.1186/s42162-023-00259-2
12. Bibri, S. E., Huang, J., Jagatheesaperumal, S. K., & Krogstie, J. (2024). The synergistic interplay of artificial intelligence and digital twin in environmentally planning sustainable smart cities: A comprehensive systematic review. Environmental science and ecotechnology, 20, 100433. https://doi.org/10.1016/j.ese.2024.100433
13. Bretherton, F. P., & Singley, M. E. (1994). Metadata: A user's view. In Metadata Conference Proceedings
14. Clark, J. L., Blundell, J., DeVet, K. E., & Hardesty, J. L. (2020). Metadata requirements for 3D data. In 3D/VR in the Academic Library: Emerging Practices and Trends (Preprint).
15. Cociña, C., & Jokela, M. (2023). Future city digital twinning and the urban realm: A systematic literature review. Cities, 139, 104384. https://doi.org/10.1016/j.cities.2023.104384
16. Conejos Fuertes, F., García, L., Parales Quenza, M., Valls, D., & Lloret, J. (2020). Digital Twin for Smart Water Networks: Challenges and Applications
17. Deren, L., Jie, S., Xia, H., Jianya, G., & Qian, Y. (2021). Digital twin of city: Concept, architecture and progress. International Journal of Applied Earth Observation and Geoinformation, 102, 102421. https://doi.org/10.1016/j.jag.2021.102421
18. Ellul, C., Kimmig, R., Böhme, J., & Goodchild, M. (2024). Towards national connected digital twins: A geospatial framework. Journal of Geographical Systems. Advance online publication. https://doi.org/10.1007/s10109-024-00415-w
19. Ellul, C., Kimmig, R., Böhme, J., & Goodchild, M. (2024). Towards national connected digital twins: A geospatial framework. Journal of Geographical Systems. Advance online publication. https://doi.org/10.1007/s10109-024-00415-w
20. European Commission. (2021). INSPIRE Metadata Implementing Rules: Technical Guidelines based on EN ISO 19115 and EN ISO 19119.
21. Federal Geographic Data Committee. (1998). Content Standard for Digital Geospatial Metadata (FGDC-STD-001-1998).
22. Flammini, F. (2021). Digital twins as run-time predictive models for the resilience of cyber-physical systems: A conceptual framework. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 379(2207), 20200369. https://doi.org/10.1098/rsta.2020.0369
23. Geoinformationsinfrastruktur Nordrhein-Westfalen (GDI-NRW). (2021). Metadatenhandbuch: Technische und inhaltliche Standards für Geodaten und Geodatendienste in NRW.
24. Geospatial World. (2020). Virtual Singapore – Building a 3D-Empowered Smart Nation. Retrieved July 18, 2025, from https://geospatialworld.net/prime/case-study/national-mapping/virtual-singapore-building-a-3d-empowered-smart-nation/
25. Ghaith, M., Fares, A., El-Zaart, A., Allache, A., & Kilani, Y. (2022). Towards a Flood Digital Twin for the City of Calgary: Data Integration, Model Calibration, and Scenario Simulation.
26. Grieves, M. (2014). Digital Twin: Manufacturing excellence through virtual factory replication. White paper.
27. Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In F.-J. Kahlen, S. Flumerfelt, & A. Alves (Eds.), Transdisciplinary Perspectives on Complex Systems (pp. 85–113). Springer.
28. Helsingin kaupunki-https://www.hel.fi/fi/paatoksenteko-ja-hallinto/tietoa-helsingista/kartat-ja-paikkatieto/helsinki-3d
29. Herlyn, W. (2022). Digital twin: concepts and applications in industry. In Industrial Applications of the Digital Twin (pp. 1–19). Springer.
30. Hobona, G., Griesmann, L., Portele, C., & Wytzisk, A. (2023). OGC API Standards: Principles & Prospects. In Proceedings of the 26th AGILE Conference on Geographic Information Science (pp. 1–6).
31. International Organization for Standardization. (2019). ISO 19115-2:2019 Geographic information — Metadata — Part 2: Extensions for acquisition and processing. Geneva: ISO.
32. ISO. (2014). ISO 19115-1:2014 Geographic information – Metadata – Part 1: Fundamentals.
33. ISO/TC211. (2021). ISO/TC 211 Geographic information/Geomatics. https://www.iso.org/committee/54904.html
34. Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002
35. Khan, A., & Di, K. (2017). Standardization and sharing of geospatial data models for lunar mapping and navigation. In The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W7, 37–41. https://doi.org/10.5194/isprs-archives-XLII-4-W7-37-2017
36. Kim, H. M., Sabri, S., & Kent, A. (2021). Smart cities as a platform for technological and social innovation in productivity, sustainability, and livability: A conceptual framework. Smart Cities for Technological and Social Innovation, 9–28. https://doi.org/10.1016/B978-0-12-818886-6.00002-2
37. Kresse, W., & Fadaie, K. (2004). ISO Standards for Geographic Information. Springer.
38. Kutzner, T., Chaturvedi, K., Kolbe, T. H., & Smyth, C. (2020). CityGML 3.0–New Functions Open Up New Applications. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 88(4), 299–313.
39. LAMP Consortium. (2021). Latin America Metadata Profile (LAMP): Version 2.0 Documentation. LAMP Consortium.
40. Landeshauptstadt München. (2024). Digital Twin – Public Participation. https://muenchen.digital/projekte/digitaler-zwilling/01_public-participation-en.html
41. Li, D. (1994). Three-dimensional GIS—A review. Proceedings of the International Symposium on Spatial Data Handling, 40–52.
42. Li, D., Shen, J., He, X., Gong, J., & Qian, Y. (2020). Digital twin of city: Concept, architecture and progress. International Journal of Applied Earth Observation and Geoinformation, 102, 102421. https://doi.org/10.1016/j.jag.2021.102421
43. Madni, A. M., Madni, C. C., & Lucero, S. D. (2021). A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. Applied System Innovation, 4(3), 36. https://doi.org/10.3390/asi4030036
44. Madni, A. M., Madni, C. C., & Lucero, S. D. (2023). A survey on digital twins: Architecture, enabling technologies, security and privacy, and future prospects. Applied System Innovation, 6(1), 36. https://doi.org/10.3390/asi6010036
45. Mete, M. O.: GEOSPATIAL BIG DATA ANALYTICS FOR SUSTAINABLE SMART CITIES, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4/W7-2023, 141–146, https://doi.org/10.5194/isprs-archives-XLVIII-4-W7-2023-141-2023, 2023.
46. Monzon, A. (2015). Smart Cities Concept and Challenges: Bases for the Assessment of Smart City Projects. In International Conference on Smart Cities and Green ICT Systems (pp. 1–11). https://doi.org/10.5220/0004969500110023
47. Mostafa, M. A., Elsayed, A. E., & Kassem, M. (2021). An effective architecture of digital twin system to support decision-making in construction projects. Ain Shams Engineering Journal, 12(4), 4075–4085.
48. Musen, M. A., O'Connor, M. J., Schultes, E., Martínez-Romero, M., Hardi, J., & Graybeal, J. (2022). Modeling community standards for metadata as templates makes data FAIR. Scientific data, 9(1), 696. https://doi.org/10.1038/s41597-022-01815-3
49. Nahrstedt, K., Lopresti, D., Zorn, B., Drobnis, A. W., Mynatt, B., Patel, S., & Wright, H. V. (2016). Smart Communities Internet of Things. Computing Community Consortium. https://cra.org/ccc/resources/ccc-led-whitepapers
50. Nebert, D. D., (Ed.). (2004). Developing Spatial Data Infrastructures: The SDI Cookbook (Version 2.0). Global Spatial Data Infrastructure Association.
51. OGC. (2023). About OGC. https://www.ogc.org/about/
52. Open Geospatial Consortium. (2020). OGC API – Features – Part 1: Core. Open Geospatial Consortium.
53. Open Geospatial Consortium. (2022). OGC API – 3D GeoVolumes – Part 1: Core. Open Geospatial Consortium.
54. Raper, J. (1992). Multidimensional geographic information science. London: Taylor & Francis.
55. Rathore, M. M., Paul, A., Hong, W. H., Seo, H., Awan, I. U., & Saeed, S. (2018). Urban planning and building smart cities based on the Internet of Things using big data analytics. Computer Networks, 144, 165–183. https://doi.org/10.1016/j.comnet.2018.07.012
56. Sabot F. (2022). On the importance of metadata when sharing and opening data. BMC genomic data, 23(1), 79. https://doi.org/10.1186/s12863-022-01095-1
57. Singh, A., Futrelle, J., Kesselman, C., & Podhorszki, N. (2003). A Metadata Catalog Service for Data Intensive Applications. In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (pp. 1–15).
58. Sjarov, A., Jantschgi, J., Trojer, M., & Stary, C. (2020). Towards an overview of industrial digital twin approaches. Procedia Manufacturing, 42, 530–537
59. Stark, R., & Damerau, T. (2019). Digital Twin – The Digitalization of Products, Services, and Companies, and What That Might Mean for Your Next Project. In A. Anderl & M. Rieg (Eds.), Digital Engineering (pp. 125–146). Springer. https://doi.org/10.1007/978-3-662-60042-6_8
60. Stvilia, B. (2010). Born of Collaboration: The Evolution of Metadata Standards in an Aggregated Environment.
61. Uchida, Y., et al. (2007). Development of Japan Profile for Metadata based on ISO19115. In Proceedings of the 10th AGILE International Conference on Geographic Information Science.
62. Wang, X., & Gong, J. (2009). A construction schema for provincial spatial database metadata standard. Geoinformatics 2009: 17th International Conference on Geoinformatics, 1–5.
63. White, E., Gill, L., Gartner, G., & Williams, B. (2021). A 3D Web GIS participatory decision support tool for flood risk and uncertainty communication: A case study in Dublin, Ireland.
64. Yasuoka, M., Kuwahara, N., & Shibata, Y. (2010). Digital city: Technologies, experiences, and future perspectives. In T. Ishida (Ed.), Digital Cities V: Urban Intelligence and Sustainability (pp. 1–13). Springer. https://doi.org/10.1007/978-3-642-14831-6_1
65. Zhang, C., & Li, W. (2013). Urban land cover mapping using time series Landsat images based on an ensemble classifier. ISPRS International Journal of Geo-Information, 2(2), 413–429. https://doi.org/10.3390/ijgi2020413
66. Zlatanova, S., Shi, W., & Fabbri, A. G. (Eds.). (2004). 2D and 3D Spatial Data Representations. London: Taylor & Francis.