| 研究生: |
孫煜琅 Sun, Yu-Lang |
|---|---|
| 論文名稱: |
固態氟化鑭電解質在常溫型感測器之應用 A Room-temperature Gas Sensor Based on Solid-State Lanthanum Fluoride Electrolyte |
| 指導教授: |
楊明長
Yang, Ming-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 159 |
| 中文關鍵詞: | 塔佛曲線 、混合電位 、氧氣 、一氧化碳 |
| 外文關鍵詞: | mixed potential, Tafel plot, oxygen, carbon monoxide |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究主旨在探討白金(濺鍍)/氟化鑭/白金(濺鍍)電極片感測氧氣與一氧化碳的特性,希望能發展常溫下感測一氧化碳的感測器。探討一氧化碳在無氧及氧氣存在的感測特性及機構,影響靈敏度的變因包括流速、壓錠壓力與氧氣的濃度,並提出塔佛曲線關係略圖對感測機構作說明。
氟化鑭粉末在不同壓力1.8增加為4.4 ton/cm2壓錠,經700 ºC鍛燒7小時後,隨壓力增加孔隙度從7.52×10-3減少至4.73×10-3,氟化鑭電解質連續相隨壓錠壓力增加而增加,有助於電解質內部傳導離子的能力。此外壓錠壓力增加造成感測電極表面粗糙度降低,由循環伏安圖中氫氣氧化峰的庫倫量由24.6 mC減少至19.8 mC,顯示真實活性面積隨壓力增加減少。
以白金/氟化鑭/白金感測電極片感測氧氣,氣體流速從50增加為80 ml/min時,電子轉移數1.2改變為2.1。氧氣應答時間隨流速增加至80 ml/min而減小為11.7分鐘。
氮氣中一氧化碳感測淨電位值不受氣體流速的影響,靈敏度為66 mV/decade不受流速影響推算電子轉移數為0.9。
在不同氧氣濃度存在下,一氧化碳的感測淨電位差值隨著氧氣濃度增加而減少,氧氣濃度高達40 %,靈敏度急遽下降至25.9 mV/decade。
氧氣、氮氣中一氧化碳及氧氣存在下一氧化碳感測靈敏度均受氟化鑭電解質錠壓錠壓力影響,隨著壓錠壓力增加,靈敏度先增加後減少,有極大值產生。
實驗所得氧氣與一氧化碳塔佛曲線略圖中混合電位減去氧氣平衡電
位,與開路電位下量測感測淨電位差值符合。此外,本文提出塔佛曲線略圖,均可合理解釋氧氣及氧氣存在下一氧化碳的感測電位,在氧氣濃度固定下,一氧化碳感測淨電位差值不受背景電位改變的影響.
Abstract
The preparation of Pt/LaF3/Pt assembly and its sensing characteristics of oxygen and carbon monoxide at room temperature were studied in this research. It is our objective to develop carbon monoxide sensor operated at room temperature. Sensing behavior and mechanism for carbon monoxide with and without oxygen were also discussed. Parameters including flow rate, loading pressure on LaF3 pellet, and concentration of oxygen affected sensitivity. In this thesis, Tafel plot was proposed to describe the sensing mechanism.
LaF3 powder was pressed to form a pellet by different loading pressures from 1.8 to 4.4 ton/cm2, and then sintered at 700 ºC for 7 hr. When loading pressure on LaF3 powder was increased, porosity of pellet decreased from 7.52×10-3 to 4.73×10-3and LaF3 phase also increased. Increasing LaF3 phase can improve ionic conduction of the electrolyte. In addition, the surface roughness on sensing electrode decreased due to higher loading pressure. From cyclic voltammogram, the change of charge for hydrogen oxidation revealed that real surface area decreased with the loading pressure increasing.
Using Pt/LaF3/Pt assembly for sensing oxygen, sensitivity decreased from 49.2 to 28.7 mV/decade and the corresponding number of electron transfer increased from 1.2 to 2.1 when gas flow rate increased from 50 to 80 ml/min. The response time decreased to 11.7 min with gas flow rate increasing to 80 ml/min.
The effect of gas flow rate on sensing potential difference for carbon monoxide without oxygen could be neglected. Sensitivity for carbon monoxide was 66 mV/min, and the calculated number of electron transfer was 0.9.When carbon monoxide existed, the sensing potential difference
decreased with increasing oxygen concentration. The sensitivity for carbon monoxide decreased significantly down to 25.9 mV/decade when oxygen concentration was up to 40 %.
Loading pressure influenced the sensitivity for sensing oxygen, and carbon monoxide with and without oxygen. There was an optimum loading pressure for a maximum sensitivity.
The sensing potential difference, the mixed potential subtracting from equilibrium potential of oxygen in Tafel plot, for carbon monoxide in the presence of oxygen corresponded to that measured by open circuit potential. In addition, the proposed Tafel plot was reasonable for explaining the sensing potential difference of oxygen and carbon monoxide in oxygen. As oxygen concentration was fixed, the sensing potential difference was not affected by the change of background potential.
參考文獻
1. 鄭煜騰、鄭耀宗,氣體感測器的市場分析與發展概況,科儀新知,18卷5期,76-84頁,民國86年4月。
2. 鄭敦仁,材料與科學,感測元件技術發展動向(Ⅱ),第76期, 96~100頁,1993年。
3. 余榮彬、湯大同,一氧化碳氣體監測器評估,勞工安全衛生研究季刊,第3卷,第3期,61-74頁,1995年。
4. 曾明漢,材料與社會,觸媒燃燒型氣體感測器,第68期,57~61頁,民國81年8月。
5. 楊明長、曾坤億、王瓊紫,一氧化碳感測器之原理與應用,化工技術,第8卷第2期,158~167頁,2000年。
6. A. M. Azad, S. A. Akbar, S. G. Mhaisalkar, L. D. Birkefeld, and K. S. Goto, Solid-State Gas Sensors: A Review, J. Electrochem. Soc., 139, p.3690-3704, 1992.
7. 顧志鴻,MOSFET氣體感測器,材料與社會,第68期,71~77頁,民國81年8月。
8. 眭曉林,固態化學感測元件之積體化設計,材料與科學,第60期,56~61頁,1991年。
9. 邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,120~133頁,1993年。
10. W. J. Fleming, Physical Principles Governing Nonideal Behavior of the Zerconia Oxygen Sensor, J. Electrochem. Soc., 124, p.21-28, 1977.
11. 邱秋燕、周澤川,化學感測器之原理與應用,化工,第40卷,第3期,120~133頁,1993年。
12. 蔡嬪嬪,固態離子導體電化學式氣體感測器,材料與社會,第68期,67~70頁,1992年。
13. 陶德和,電流式氣體感測器簡介,科儀新知,第15卷,第2期,第64~70頁,1993年。
14. K. Marcinkowska, M. P. McGauley and E. A. Symons, A New Carbon Monoxide Sensor Based on a Hydrophobic CO Oxidation Catalyst, Sensors and Actuators, B5, p. 91-96, 1991.
15. B. Jonathan Luff, James S. Wilkinson and Guido Perrone, Indium Tin Oxide Overlayered Waveguides for Sensor Applications, Applied Optics, Vol. 36, Iss. 27, p. 7066-7072, 1997.
16. Viswanathan B., CO Oxidation and NO Reduction on Perovskite Oxides, Catal. Rev.-Sci. Eng., 34, p.337, 1992.
17. H. Inaba, and H. Tagawa, Review Ceria-based solid electrolytes, Solid State Ionics 83, p.1-16, 1996.
18. T. H. Etsell and S. N. Flengas, The Electrical Properties of Solid Oxide Electrolytes, Chem. Rev., 20, p.339, 1970.
19. Y. Yan, Y. Shimizu, N. Miura and N. Yamazoe, Characteristics and Sensing Mechanism of SOx Sensor Using Stabilized Zirconia and Metal Sulphate, Sensors and Actuators B, 12, p.77-81, 1993.
20. Automotive Oxygen Sensors, E.M. LogothetisResearch Staff, Ford Motor Company, Dearborn, MI 48121, U.S.A.
21. J. H. Lee, B. K. Kim, K. Y. Lee, H. I. Kim and K. W. Han, A New catalyst Monitoring Sensor for Gasline Engine Using YSZ-Al2O3 as Solid Electrolyte and Gas Diffusion Barrier, Sensors and Actuators B, 59, p.9-15, 1999.
22. T. Hibino, K. Ushiki and Y. Kuwaahara, Electrochemical Oxygen Pump Using CeO2-Based Solid electrolyte for NOx Detection Independent of O2 Concentration, Solid State Ionics, 93, p.309-314, 1997.
23. R. Akila and K. T. Jacob, An SOx (x=2, 3) Sensor Usingβ-alumina/Na2SO4 Couple, Sensors and Actuators B, 16, p.311-323, 1989.
24. Maruyams, Y. Saito, Y. Matsumoto and Y. Yano, Potentiometric Sensor for Sulfer Oxides Using NASICON as A Solid Electrolyte, Solid State Ionics, 17, p.281-286, 1985.
25. T、G. Rog, A. Kolowska-Rog and K. Zakula, Calciumβ-alumina and NASICON Electrolytes in Galvanic cells with Solid Reference electrodes for Detection of Sulphur Oxide in Gases, Journal of Applied Electrochemistry, 21, p.308-312, 1991.
26. F. Qiu, L. Sun, X. Li, M. Hirata, Static Characteristic of Planar-Type CO2 Sensor Based on NASICON and with Inner-Heater, Sensors and Actuators B, 45, p. 233-238, 1997.
27. Roth R. S., J. R. Dennis and H. F. McMurdie, Phase Diagrams for Ceramists, American Ceramic Society, Columbus, Ohio, vol. 6, p.182, 1987.
28. A. Heuer. And L. W. Hobbs, Science and Technology of Zerconia, American Ceramic Society, Columbus, Ohio, 1981, vol. 3, p.216, 1981.
29. E. M. Logothetis, J. H. Visser, R. E. Soltis and L. Rimai, Chemical and Physical Sensors Based on Oxygen Pumping with Solid-State electrochemical Cells, Sensors and Actuators B, 9, p.183-189, 1992.
30. Z. Y. Can, H. Narita, J. Mizusaki and H. Tagawa, Dtection of Carbon Monoxide by Using Zirconia Oxygen Sensor, Solid State Ionics, 79, p. 344-348, 1995.
31. F. Garzon, I. Rastrick, E. Brosha, R. Houlton, Dense Diffusion Barrier Limiting Current Oxygen Sensor, Sensors and Actuactors B, 50, p. 125-130, 1998.
32. G. Couturier, Y. Danto, R. Gibaud, and J. Salardenne, Influence of Oxygen on Electrical Propertues of Beta PbF2 Thin Films, Solid State Ionics, 5, p. 621-624, 1981.
33. D. R. Franceschetti, J. Schooman and J. R. Macdonald, The Small-Signal A.C. Response ofβ-PbF2, Solid-State Ionics, 5, p. 617-620, 1981.
34. A. Pelloux, J. P. Quessada, J. Fouletier, P. Farby and M. Kleitz, Utilization of a Dilute Solid Electrolyte in a Oxygen Gauge, Solid State Ionics, 1, p. 343-354, 1980.
35. E. Siebert, J. Fouletier and S. Vlminot, Characteristics of An Oxygen Gauge at Temperatures Lower than 200 ºC,Solid State Ionics, 9/10, p. p.1291-1294, 1983.
36. E. Siebert, J. Fouletier and M. Kleitz, Oxygen Sensing With Solid Elecrolyte Cells from Room Temperature up to 250 ºC, Journal of the Electrochemical Society, 134, p. 1573-1578, 1987.
37. N. Yamazoe, J. Hisamoto, S. Kuwata, and N. Miura, Potentiometric Solid-State Oxygen Sensor Using Lanthanum Fluoride Operative at Room Temperature Sensors and Actuators, 12, p. 415-423, 1987.
38. N. Yamazoe, J. Hisamoto, S. Kuwata, and N. Miura, Solid-State Oxygen Sensor Using Sputtered LaF3, Sensors and Actuators, 16, p.301-310, 1989.
39. S. Kuwata, N. Mura, N. Yamazoe and T. Seiyama, A Potentiometric Oxygen Sensor Using LaF3 Single Crystal Operative at Room Temperature, Chemistry Letters, 8, p. 1295-1296, 1984.
40. N. Miura, J. Hisamoto, S. Kuwata, and N. Yamazoe, Solid Electrolyte Oxygen Sensor Using Using LaF3 Sputtered Film Workable at Room Temperature, Chemistry Letters, p.1477-1480, 1987.
41. N. Miura, J. Hisamoto, N. Yamazoe and S. Kuwata, LaF3 Sputtered Film Sensor for Detecting Oxygen at Room Temperature, Application of Surface Science, 33/34, p.1253-1259, 1988.
42. W. Shen, X. D. Wang, R. W. Cattrall, and J. Liesegang, Factors affecting the resistance and performance of Fluoride ion-selective electrodes, Electroanalysis, 7, No. 10, 1995.
43. W. Shen, X. D. Wang, R. W. Cattrall, G. L. Nyberg and J. Liesegang, XPS Analysis of Hydroxide Ion Surface Reactions on CeF3 and LaF3 Fluoride Ion-Selective Electrodes, Electroanalysis, 9, No. 12, 1997.
44. S. Harke, H.-D. Wiemhöfer and W. Göpel, Investigations of Electrodes for Oxygen Sensors Based on Lanthanum Trifluoride as Solid Electrolyte, Sensors and Actuators, B 1, p.188-194, 1990.
45. Y. Shimizu. K. Uemura, N. Miura and N. Yanazoe, Gas-Diffusion electrodes for Oxygen Reduction Loaded with Large Surface Area La1-xCaxMO3 (M=Co, Mn), Chemistry Letters, p. 1979-1982, 1988.
46. J. P. Lukaszewicz, N. Miura, and N. Yamazoe, A LaF3-based Oxygen Sensor with Perovskite-type Oxide Electrode Operative at Room temperature, Sensors and Actuators, B1, p. 195-198, 1990.
47. J. P. Lukaszewicz, N. Miura, and N. Yamazoe, Application of Perovskite-type Oxides to the Sensing Electrode of A LaF3-Based Oxygen Sensor Workable at Room temperature, Japanese Journal of Applied Physics, 28, L771-L713, 1989.
48. J. P. Lukaszewicz, N. Miura and N. Yamazoe, LaF3-Based oxygen sensor Using Pb phthalocyanine Electrode for Quick Response at Room Temperature, Sensors and Actuators B, 9, 1992, p. 55-58.
49. S. Kuwata, N. Miure and N. Yamazoe, A Solid-State Amperometric Oxygen Sensor Using Nafionâ Membrane Operative at room temperature, Chemistry. Letters, 1998, p. 1197.
50. S. Sotiropoulos,and K. Wallgren, Solid-state Microelectrode Oxygen Sensors, Analytical Chimica Acta, 388, p. 51-62, 1999.
51. 葉陶淵,化學感測器中氣體感測器的新動向,科儀新知,第20卷,第4期,72~76頁,1999年。
52. S. Kuwata, N. Miura, and N. Yamazoe, A Solid-State Amperometric Oxygen Sensor Using Membrane, Chemistry Letters, p.1197-1200, 1988.
53. 蔡嬪嬪、曾明漢,氣體感測器之簡介、應用及市場,材料與社會68期,50-55頁,民國81年。
54. 吳仁彰,固態電解質式一氧化碳感測器的理論研究,量測資訊73期,44-47頁,2000年。
55. H. Okamoto, H. Obayashi and T. Kudo, Carbon Monoxide Gas Sensor Made of Stabilized Zirconia, Solid State Ionics, 1, p. 319-326, 1980.
56. N. Li, T. C. Tan and H. C. Zeng, High-Temperature Carbon Monoxide Potentiometric Sensor, Journal of the Electrochemical Society, 140, p. 1068-1072, 1993.
57. T. Hibino, K. Ushiki and Y. Kuwaahara, Electrochemical Oxygen Pump Using CeO2-Based Solid electrolyte for NOx Detection Independent of O2 Concentration, Solid State Ionics, 93, p. 309-314, 1997.
58. R. Mukundan, E. L. Brosha, D. R. Brown, and F. H. Garzeon, Ceria-Electrolyte-Based Mixed Potential Sensors for the Detection of Hydrocarbons and Carbon Monoxide, Electrochemical and Solid-State Letters, 2, p. 412-414,1999.
59. R. Mukundan, E. L. Brosha, D. R. Brown, and F. H. Garzeon, A Mixed-Potential Sensor Based on A Ce0.8Gd0.2O1.9 Electrolyte and Platinum and Gold Electrodes, Journal of the Electrochemical Society, 147, p. 1583-1588, 2000.
60. F. Qiu, L. Sun, X. Li, M. Hirata, Static Characteristic of Planar-Type CO2 Sensor Based on NASICON and with Inner-Heater, Sensors and Actuators B, 45, 233-238, 1997.
61. .Yan, Y. Shimizu, N. Miura and N. Yamazoe, Characteristics and Sensing Mechanism of SOx Sensor Using Stabilized Zirconia and Metal Sulphate, Sensors and Actuators B, 12, p.77-81, 1993.
62. Y. Yan, Y. Shimizu, N. Miura and N. Yamazoe, High-Performance Solid-Electorlyte SOx Sensor Using MgO-Stabilized Zerconia tube and Li2SO4-CaSO4-SiO2 auxiliary phase, Sensors and Actuators B, 20, 81-87, 1994.
63. N. Miura, N. Miura, Y. Yan, M. Sato, S. Ya, Y. Shimizu and N. Yamazoe, Stabilized Zirconia Based CO2 Sensors Combination with Carbonate Auxiliary Phase, Chemistry Letters, p. 393-396, 1994.
64. H. Kurosawa, Y. Yan, N. Miura and N. Yamazoe, Stabilized Zirconia Based Potentiometric Sensor for Nitrogen Oxides, Chemistry Letters, p. 1733-1736, 1994.
65. N. Miura, G. Lu and N. Yamazoe, Mixed Potential Type NOx Sensor Based on Stabilized Zerconia and Oxide Electode, Journal of the Electrochemical Society, 143, p.L33-L35, 1996.
66. E. L. Shoemaker, M .C. Vogt and F. J. Dudek, Cyclic Voltammetry Applied to An Oxygen-ion-conduting Solid Electrolyte as an active Electrocatalytic Gas Sensor, Solid State Ionics, 92, p. 285-292, 1996.
67. A. Vogel, G. Baier and V. Schule, Non-Nernstian Potentiometric Zirconia Sensors:Screening of Potential Working Electrode Materials, SenSors and Actuactors B, 15-16, p.147-150, 1993.
68. N. Miura, T. Raisen, G. Lu andN. Yamazoe, High Selective CO Sensor Using Stabilized Zirconia and A Couple of Oxide Electodes, Sensors and Actuators B, 47, p. 84-89, 1998.
69. F. H. Garzon, R. Mukundan, E. L. Brosha, Solid-State Mixed Potential Gas Sensors: Theory, Experiments and Challenges, Solid State Ionics, 136-137, p. 633-638, 2000.
70. E. L. Brosha, R. Mukundan, D. R. Brown, F. H. Garzon, J. H. Visser, M. Zanini, Z. Zhou and E. M. Logothetis, CO/HC Sensors Based on thin Films of LaCoO3 and La0.8Sr0.2CoO3-δ metal Oxides, Sensors and Actuators B, 69, p. 171-182, 2000.
71. N. Miura, H. Kato, N. Yamazoe, and T. Seiyama, D. Kagaku, 50, p.858, 1982.
72. S. Kuwata, N. Mura, N. Yamazoe and T. Seiyama, Response of A Solid-State Potentiometric sensor using LaF3 to A Small Amount of H2 or CO in Air at Lower temperatures, Chemistry Letters, 8, p. 1295-1296, 1984.
73. Opekar, František; Štulík, Karel, Electrochemical Sensors with Solid Polymer Electrolytes, Analytica Chimica Acta, 385, p. 151-162, 1999.
74. 陳柏仁,白金電極在一氧化碳感測器內之感測行為,國立成功大學化學工程研究所碩士論文,1995年。
75. 林燦國,電化學式一氧化碳感測元件之設計研究,國立成功大學化學工程研究所碩士論文,1997年。
76. 曾坤億,半乾式一氧化碳感測器之研究,國立成功大學化學工程研究所碩士論文,1999年。
77. 王瓊紫,以錫修飾白金電極對一氧化碳感測之研究,國立成功大學化學工程研究所碩士論文,2000年。
78. A. Yasuda, T. Fujioka, N. Yamaga and S. Kusanagi, The Constant Potential Amperometrical Response of the Planar Electrochemical Carbon Monoxide Sensor, Reactive Polymers, 15, p. 203-207, 1991.
79. Allen J. Bard, R. Parsons, and J. Jordan, Standard Potentials in Aqueous Solution, Marcel Dekker, Inc., New York, 1985.
80. S. Fujihara, C. Mochizuki, T. Kimura, Formation of LaF3 Microcrystals in Sol-Gel Silica, Journal of Non-Crystalline Solids, 244, p.267-274, 1999.
81. 駱永建,氟化鑭白金陶瓷基板之製備與應用於氧氣感測器,東海大學化學工程研究所碩士論文,2000年。
82. A. Yasuda and T. Shimidzu, Electrochemical Carbon Monoxide Sensor with A Nafion® Film, Reactive and Functional Polymers, 41, p. 235-243, 1999.