| 研究生: |
曹齡娟 Tsao, Ling-Chuan |
|---|---|
| 論文名稱: |
氯化血紅素修飾之普魯士藍奈米粒子攜載一氧化氮進行局部急性傷口的治療 Hemin-derivatived Prussian Blue Nanoparticles Carrying Nitric Oxide for Topically Applied on Acute Wound |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 56 |
| 中文關鍵詞: | 普魯士藍奈米粒子 、一氧化氮 、傷口癒合 |
| 外文關鍵詞: | Prussian Blue Nanoparticles, Nitric Oxide, Wound Healing |
| 相關次數: | 點閱:52 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一種材料,利用了生物相容性高、以及有良好光熱轉換效率的普魯士藍奈米粒子,將其本身表面的氰基 (CΞN) 利用還原劑氫化鋁鋰還原為胺基 (NH2),使其可以用於將表面帶有羧酸根之氯化血紅素修飾於材料表面上。接著,由於氯化血紅素分子中的鐵離子與一氧化氮具有很高親和力,我們將一氧化氮氣體分子直接配位於氯化血紅素的鐵離子上,可以改善傳統的一氧化氮供體價格較高昂,且較不穩定、容易自發性的釋放一氧化氮的缺點。在合成出此可以攜帶一氧化氮之普魯士藍奈米粒子後,利用普魯士藍於近紅外光區域有吸收的特性,本實驗使材料經由808 nm雷射照射後有光熱轉換達到升溫的效果,可以控制一氧化氮的釋放。接著再利用一氧化氮於傷口區域有血管新生、幫助膠原蛋白合成等幫助加快傷口癒合功能,直接將材料滴至傷口區域進行一氧化氮的控制釋放,達到加快傷口癒合的功能。
We demonstrate a successful synthesis of Hemin-derivated Prussian Blue Nanoparticles and provide a nitric oxide controllable releasing platform. First, We synthesis the prussian blue nanoparticles, and reduce the surface cyano group into amine group by using Lithium aluminum hydride. Last, we modify Hemin on the Prussian blue surface, then conjugate the NO on the iron ion on Hemin because of the high affinity for nitric oxide to Hemin. Due to the Characteristics of he Prussian blue revealing NIR light-induced hyperthermia, this material can get control nitric oxide releasing under 808nm irradiation. As is well known that nitric oxide can be used for improving angiogenesis and increasing collagen synthesis, we combine 808 nm irradiation control releasing nitric oxide on the wound site to accelerate wound healing.
1. Zhao, D., et al., Sensing-functional luminescent metal–organic frameworks., Cryst. Eng. Comm., 2016. 21, 3746-3759.
2. Hoffman, H. A., et al., Prussian blue nanoparticles for laser-induced photothermal therapy of tumors., RSC Adv., 2014, 4, 29729.
3. Cai, X., et al., A Versatile Nanotheranostic Agent for Efficient Dual-Mode Imaging Guided Synergistic Chemo-Thermal Tumor Therapy., Adv. Func. Mater., 2015, 25, 2520-2529.
4. Hu, M., et al., Synthesis of Prussian blue nanoparticles with a hollow interior by controlled chemical etching., Angew. Chem., 2012. 51, 984-988.
5. Kingo Itaya, I.U., Nature of Intervalence Charge-Transfer Bands in Prussian Blues., Inorg. Chem., 1986. 25, 389-392.
6. Fu, G., et al., Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy., Chem. Commun., 2012, 48, 11567–11569.
7. Chen. W et al., Cell Membrane Camouflaged Holoow Prussian Blue Nanoparticles for Synergistic Photothermal -/ Chemotherapy of Cancer., Adv. Funct. Mater. 2017, 27, 1605795.
8. Cheng, L., et al., PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy., Biomaterials, 2014, 35, 9844-9852.
9. Li, W.P., et al., Controllable CO Release Following Near-Infrared Light-Induced
Cleavage of Iron Carbonyl Derivatized Prussian Blue Nanoparticles for CO-Assisted Synergistic Treatment., ACS Nano, 2016, 10, 11027-11036.
10. P.S. Korrapati et al., Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration., Mater. Sci. Eng. C, 2016, 67, 747–765.
11. Tomasek JJ et al., Myofibriblasts and Mechano- Regulation of Connective Tissue Remodelling., Nat. Rev. Mol. Cell. Biol., 2002, 5, 349-63.
12. Martin P., Wound healing--aiming for perfect skin regeneration., Science, 1997, 5309, 75-81.
13. Singer AJ et al., Cutaneous wound healing., N. Engl. J. Med., 1999, 10, 738-746.
14. Xie Z. et al., Dual growth factor releasing multi-functional nanofibers for wound healing., Acta Biomaterialia, 2013, 9, 9351–9359.
15. DUNCAN et al., Nanoparticle-Stabilized Capsules for the Treatment of Bacterial Biofilms., ACS Nano, 2015, 8, 7775-7782.
16. Augustine R. et al., Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing., RSC Adv., 2014, 4, 24777–24785.
17. Li, W.P., et al., CO2 Delivery To Accelerate Incisional Wound Healing Following Single Irradiation of Near-Infrared Lamp on the Coordinated Colloids., ACS Nano, 2017, 6, 5826-5835.
18. Tay C.Y. et al., Nanoparticles Strengthen Intracellular Tension and Retard Cellular Migration., Nano Lett., 2014, 14, 83−88.
19. Knott, A. B.; Bossy-Wetzel, E., Nitric oxide in health and disease of the nervous system. Antioxid. Redox Signal., 2009, 11, 541-553.
20. Manukhina, E. B.; Downey H. F.; Mallet, R. T. Role of nitric oxide in cardiovascular adaptation to intermittent hypoxia., Exp. Biol. Med. 2006,
231, 343-365.
21. Witte, M. B. et al., Nitric Oxide and Wound Healing., World J. Surg., 2004, 28, 301-306.
22. Witte, M.B. and Barbul A., Role of nitric oxide in wound repair., Am. J. Surg., 2002, 183, 406–412.
23. Schwentker A. et al. Nitric oxide and wound repair: role of cytokines?, Nitric Oxide, 2002, 7, 1–10.
24. Luo, J.D. et al. Nitric oxide: a newly discovered function on wound healing., Acta. Pharmacol. Sin., 2005, 3, 259-264.
25. Mistry, R.K., A.C. Brewer., Redox regulation of gasotransmission in the vascular system: A focus on angiogenesis., Free Radic. Biol. Med., 2017, 108, 500-516.
26. Papapetropoulos, A. et al., Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells., J. Clin. Investig., 1997, 100, 3131–3139.
27. Ziche, M. et al., Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis., J. Clin. Investig., 1997, 99, 2625–2634.
28. André-Lévigne D. et al., Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair., Int. J. Mol. Sci., 2017, 18, 2149.
29. Choi, H. W.; Kim, J.; Kim, J.; Kim, Y.; Song, H. B.; Kim, J. H.; Kim, K.; Kim, W. J. Light-Induced Acid Generation on a Gatekeeper for Smart Nitric Oxide Delivery., ACS Nano, 2016, 10, 4199−4208.
30. Kang, Y.; Kim. J.; Lee, Y. M.; Im, S.; Park, H. Kim, W. J., Nitric Oxide-Releasing Polymer Incorporated ointment for cutaneous wound healing., J. Control Release., 2015, 220, 624–63.
31. Martinez L.R. et al. Antimicrobial and Healing Efficacy of Sustained Release Nitric Oxide Nanoparticles Against Staphylococcus Aureus Skin Infection., J. Invest. Dermatol., 2009, 129, 2463–2469.
32. Han, G. et al., Nitric Oxide Releasing Nanoparticles Are Therapeutic for Staphylococcus aureus Abscesses in a Murine Model of Infection., PLoS One, 2009, 11, 7804.