| 研究生: |
陳柏維 Chen, Po-Wei |
|---|---|
| 論文名稱: |
Wiimote紅外線室內定位技術與運動控制應用於機器建築與智慧生活之研究 IR Indoor Localization and Wireless Transmission for Motion Control in Robotic Architecture and Intelligent Life Applications Based on Wiimote Technology |
| 指導教授: |
陳國聲
Chen, Kuo-Shen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 192 |
| 中文關鍵詞: | Wiimote 、室內定位 、運動控制 、CMOS影像感測器 、無線感測器網路 、機器建築與智慧生活 |
| 外文關鍵詞: | Wiimote, Indoor Localization, Motion Control, CMOS Image Sensor, Wireless Sensor Network (WSN), Robotic Architecture and E-Life |
| 相關次數: | 點閱:144 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
將感測器與致動器導入智慧化居住空間,使空間具有感應、彈性、與互動性,能因應天氣與居住者的行為需求,自動產生空間表層的變形以及智慧化之服務功能,係未來智慧建築之趨勢。由於Wiimote控制器可感測近紅外光源進行指向定位,以及高擴充性之特性,可作為空間表層構件定位、無線感測、與智慧控制等應用。本文的研究目標是以Wiimote為基礎硬體,發展高精度室內定位系統,以符合各種用途機器人之定位導航應用,同時突破Wiimote定位範圍過小之侷限,發展多區定位技術,並同時維持公分等級之定位精度,以實現群體機器人之運動控制。同時並以無線的方式進行環境感測與智慧控制,結合感測元件與定位系統於一模組化載具,以展示Wiimote系統於機器建築與智慧生活之整合應用。本研究首先針對Wiimote之動態特性與精確度進行性能評估,提供設計依據。接著基於運動學,以飛航管制區的概念,配合LabVIEW虛擬圖控平台發展Multi-zone定位演算法,實現高精度大範圍之空間定位技術,並以雙軸線性伺服馬達平台驗證之。並深入探討IR LED陣列與CMOS影像感測器在實際定位時之幾何關係、程式演算、與影像感測器之解析度變化關係。最後將利用Wiimote之內建元件與I/O埠進行環境感測與運動控制展示,並整合於未來機器建築與互動式智慧生活之應用情境。除了實現空間機器人單元之定位感測與運動控制,本研究之成果亦可延伸至人本智慧生活與居家生活照護等應用。本研究實際展示機器人之運動控制、Wiimote與Nunchuk控制器之擴充感測與觸發機制、智慧遙控功能、以及遠端監控功能等,也可擴展至各種動態量測分析與三維空間之運動感測,實現智慧建築以外的應用。未來希望歸納Wiimote控制器之關鍵元件,如CMOS影像感測器、Bluetooth晶片、加速規、以及微控制器等,自行設計一模組化電路將以上重要元件結合,發展小型化、高解析度、且功能完善之定位感測模組。
With the integration of sensors and actuators with buildings, spaces therefore have sensing ability, flexibility, and interactivity. Moreover, there is also the ability of auto-transformation in space and intelligent services depending on weathers and habitants’ needs and behaviors, which is the trend of future buildings. Wiimote controller can be applied to localization of space vehicles, wireless sensing, and smart remote controlling as a result of pointing localization with near infrared ray (NIR) and high expandability. In this thesis, we developed the high expandability and extremely accurate localization technique by utilizing IR LED arrays combined with CMOS image sensor built in Wiimote. We designed the multi-zone positioning technique based on the concept of air traffic control according to Kinematics, and accomplished the localization algorithm by LabVIEW. Then we designed various types of dynamic experiments utilizing dual-axis linear motor as a platform to evaluate and verify the dynamic and localization performances of Wiimote system, such as dynamic characteristic and positioning accuracy. We interpreted and discussed thoroughly about the principle of geometry, algorithm of localization, and the relation of CMOS image sensor resolution between IR LEDs and Wiimote camera in the actual applications. We have used the Wiimote built-in components and I/O ports for varied environmental sensing and motion control demonstration, and integrated into the applications of robotic building and interactive E-Life. Not only does Wiimote system can achieve indoor localization and motion control of space robots and other vehicles, but also can be applied to E-Life applications. In this thesis, we demonstrated the motion control of robots, expanding the capability of Wiimote and Nunchuk to trigger devices, smart remote controlling, remote monitoring and controlling via Internet, and the design of GUI. Other applications about Wiimote can also be extended to the measurement of system dynamics, and the research of the 3D localization as well as motion sensing. Finally, we will summarize the key components inside Wiimote, such as CMOS image sensor, Bluetooth chip, accelerometer, microcontroller, and etc., to develop a small, high resolution, and functional sensing module.
參考文獻
[1]T. Jeng and C. Pan, "A Robotic and Kinetic Design for Interactive Architecture," in Poceedings of SICE Annual Conference 2010, Taiwan., 2010.
[2]李重儀, "室內定位之研製與實作," 國立中央大學資訊工程系碩士論文, 2006.
[3]M. A. Fox, "Kinetic Architectural Systems Design," in Transportable Environments Book 2, R. Kronenburg, et al., Eds., ed, 2003.
[4]Robotecture (Interactive Architecture), http://robotecture.com/
[5]M. A. Fox, "Beyond Kinetic," in Transportable Environments, ed, 2001.
[6]廖珮君, "智慧家庭核心從自動控制技術開始," 全亞文化, pp. 42-45, 2009.
[7]謝祥文, et al., "分散式視覺於機器人室內定位之應用," 智慧機器人技術專輯, 2009.
[8]C. Kee, et al., "Precise calibration method of pseudolite positions in indoor navigation systems," Computers & Mathematics with Applications, vol. 46, pp. 1711-1724, 2003.
[9]H. M. Khoury and V. R. Kamat, "Evaluation of position tracking technologies for user localization in indoor construction environments," Automation in Construction, vol. 18, pp. 444-457, 2009.
[10]H. Isshiki, et al., "Theory of Indoor GPS by Using Reradiated GPS signal," in National Technical Meeting Proceedings Integrating Technology, 2002.
[11]S. Gezici and H. V. Poor, "Position Estimation via Ultra-Wide-Band Signals " Proceedings of the IEEE, vol. 97, pp. 386-403, 2009.
[12]Ubisense, http://www.ubisense.net/en
[13]D. Maeda, et al., "Tagless location system using UWB impulse radio," in Radio and Wireless Symposium, 2009. RWS '09. IEEE, 2009, pp. 671-674.
[14]林韋澄, "慣性導航之訊號飄移抑制方法設計與實驗分析," 國立成功大學機械工程系碩士論文, 2009.
[15]ITRI, http://www.itri.org.tw
[16]S. S. Ghidary, et al., "A new Home Robot Positioning System (HRPS) using IR switched multi ultrasonic sensors," vol. 4, pp. 737-741, 1999.
[17]J. Kemper and H. Linde, "Challenges of passive infrared indoor localization," in Positioning, Navigation and Communication, 2008. WPNC 2008. 5th Workshop on, 2008, pp. 63-70.
[18]L. Sooyong and S. Jae-Bok, "Use of coded infrared light as artificial landmarks for mobile robot localization," in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International Conference on, 2007, pp. 1731-1736.
[19]A. Harter and A. Hopper, "A distributed location system for the active office," Network, IEEE, vol. 8, pp. 62-70, 1994.
[20]M. Maeda, et al., "Indoor localization and navigation using IR markers for augmented reality ".
[21]HaGi Sonic Co., Ltd., http://hagisonic.com/
[22]L. Dong and W. Jiancheng, "Research of Indoor Local Positioning Based on Bluetooth Technology," in Wireless Communications, Networking and Mobile Computing, 2009. WiCom '09. 5th International Conference on, 2009, pp. 1-4.
[23]S. Le Thanh and P. Orten, "Enhancing Accuracy Performance of Bluetooth Positioning," in Wireless Communications and Networking Conference, 2007.WCNC 2007. IEEE, 2007, pp. 2726-2731.
[24]S. P. Subramanian, et al., "PBIL PDR for scalable Bluetooth Indoor Localization," in Next Generation Mobile Applications, Services and Technologies, 2009. NGMAST '09. Third International Conference on, 2009, pp. 170-175.
[25]G. Mao, et al., "Wireless sensor network localization techniques," Computer Networks, vol. 51, pp. 2529-2553, 2007.
[26]P. Baronti, et al., "Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards," Computer Communications, vol. 30, pp. 1655-1695, 2007.
[27]J. Yick, et al., "Wireless sensor network survey," Computer Networks, vol. 52, pp. 2292-2330, 2008.
[28]S. Yun, et al., "A soft computing approach to localization in wireless sensor networks," Expert Systems with Applications, vol. 36, pp. 7552-7561, 2009.
[29]卓尚澤, "室內定位技術簡介," 元智大學老人福祉科技研究中心2009.
[30]Texas Instruments, http://www.ti.com/
[31]N. B. Priyantha, et al., "The Cricket Location-Support System," in Proc. 6th ACM MOBICOM, Boston, MA 2000.
[32]A. Harter, et al., "The anatomy of a context-aware application," in Proc. 5th Annual Int'l Conference on Mobile Computing and Network, 1999, pp. 59-68.
[33]M. Addlesee, et al., "Implementing a sentient computing system," Computer, vol. 34, pp. 50-56, 2001.
[34]Y. Fukuju, et al., "DOLPHIN: an autonomous indoor positioning system in ubiquitous computing environment," in Software Technologies for Future Embedded Systems, 2003. IEEE Workshop on, 2003, pp. 53-56.
[35]L. M. Ni, et al., "LANDMARC: indoor location sensing using active RFID," in Pervasive Computing and Communications, 2003. (PerCom 2003). Proceedings of the First IEEE International Conference on, 2003, pp. 407-415.
[36]郭嘉賓, "設計室內分區與Wiimote定位技術之吸塵器機器人," 元智大學資訊工程系碩士論文, 2008.
[37]L. Hui, et al., "Survey of Wireless Indoor Positioning Techniques and Systems," Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol. 37, pp. 1067-1080, 2007.
[38]G. Yanying, et al., "A survey of indoor positioning systems for wireless personal networks," Communications Surveys & Tutorials, IEEE, vol. 11, pp. 13-32, 2009.
[39]A. Hyo-Sung and Y. Wonpil, "Wireless Localization Networks for Indoor Service Robots," in Mechtronic and Embedded Systems and Applications, 2008. MESA 2008. IEEE/ASME International Conference on, 2008, pp. 65-70.
[40]J. C. Lee, "Hacking the Nintendo Wii Remote," Pervasive Computing, IEEE, vol. 7, pp. 39-45, 2008.
[41]Wii Remote Technology, http://money.cnn.com/magazines/fortune/storysupplement/wiiremote/index.htm
[42]Small, Low Power, 3-axis±3g iMEMS® Accelerometer, Analog Devices Inc., http://www.analog.com
[43]鍾哲民, "加速度動作辨識系統之研究及應用," 國立成功大學工程科學系碩士論文, 2008.
[44]賴盈霖. (2008年 1月號 262期) 結合GPS/重力感測器/陀螺儀 DR功能進駐導航裝置. 新電子科技雜誌. Available: http://www.mem.com.tw/
[45]Making Art Interactive. http://blog.lib.umn.edu/willow/interactiveart/
[46]High Power Infrared Emitting Diode, 940 nm, GaAlAs/GaAs, Vishay Intertechnology Inc., http://www.vishay.com/
[47]林傑斌, et al., LabVIEW從入門到精通: 文魁資訊, 2008.
[48]范逸之 and 陳立元, Visual Basic與RS-232串列通訊控制: 文魁資訊股份有限公司, 2000.
[49]陳政慰, "新型單相超音波馬達之分析與實現," 國立成功大學機械工程學系碩士論文, 2007.
[50]陳鵬倫, "遞迴式模糊類神經網路控制器應用於線性超音波馬達之研究," 國立成功大學工程科學系碩士論文, 2010.
[51]LC2MOS±15V 16 Channel High Performance Analog Multiplexer ADG406/ADG407/ADG426, Analog Device Inc., http://www.analog.com/
[52]MEMS INERTIAL SENSOR: LIS3L02AL, 3-axis - +/-2g ultracompact linear accelerometer, http://www.st.com/stonline/