簡易檢索 / 詳目顯示

研究生: 邱韋中
Chiu, Wei-Chung
論文名稱: 以第一原理計算探討鈦酸鋇摻雜鑭之缺陷生成能及其機制
The study of defect formation energy and mechanisms in lanthanum doped barium titanate by first-principles calculation
指導教授: 許文東
Hsu, Wen-Dung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 鈦酸鋇鐵電材料摻雜第一原理
外文關鍵詞: Barium titanate, ferroelectric materials, doping, La, first-principles
相關次數: 點閱:108下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈦酸鋇屬於鈣鈦礦結構的鐵電性材料,在無外加電場的情況下即有自發極化的現象,同時具有優異的介電系數,且在居禮溫度時達到最大值,透過少量鑭元素的添加可以使其在室溫具有更高的介電系數。然而鑭摻雜鈦酸鋇在不同的燒結氣氛 (氧化、還原)及摻雜濃度下,材料之導電性也截然不同 (半導體、絕緣體)。其導電性的變化可以藉由缺陷補償機制來探討,目前最被廣泛討論的機制為四個帶正三價電荷的鑭離子取代四個帶正二價的鋇離子,多出正四價的電荷利用帶負四價的電荷來補償,此機制被認為會使材料成為電的絕緣體,而出現半導體的主因為鑭的摻雜容易誘發氧空缺的生成,為了補償氧空缺帶來的電性不平衡,會生成兩個帶負一價的自由電子保持電性平衡,此機制被認為會使材料成為電的半導體,然而至今仍未有直接的實驗證據顯示其摻雜缺陷生成機制對其電性之影響。
    本研究提出八種缺陷補償機制,利用第一原理計算各別對不同缺陷機制的鑭鈦酸鋇作結構優化,並且發現當鑭離子距離陰離子缺陷越近,其能量較穩定,同時確保系統在摻雜之後其力量及能量有達到收斂的要求,在計算缺陷機制之缺陷生成能時考慮化學勢,以熱力學觀點探討在不同的環境 (氧化、還原)下系統是否由不同的缺陷生成機制所主宰。

    Barium titanate, BaTiO3, is a perovskite ferroelectric material, known for its high permittivity, making it a desirable material for applications in capacitor. Rare-earth doping has been widely used to modify the dielectric performance of BaTiO3-based ceramics. For example, a resistivity minimum occurs at
    La concentrations of around 0.3– 0.5 at.%. The effect is observed in samples
    which have been heated in air at high temperatures (1350°C), followed by rapid cooling. In this stage, BaTiO3 also exhibits the positive temperature coefficient of resistance (PTCR) effect. A famous interpretation of this results based on a switch in doping mechanism with increasing doping concentration. Although the improvement in properties is clear, the underlying dominant doping mechanisms for the effects are not well understood. For high level doping electrical insulators, the principal doping mechanism remain controversial whether ionic mechanism is through the creation of barium or titanium vacancies. In this study, first-principles calculation is applied to predict the energetics in different doping mechanism. The purpose is finding the most favor doping mechanism by comparing the substitutional energies and defect formation energies in different forms of defect system. The study improves the understanding about how doping mechanism influence the electrical properties of this material.

    摘要 I The study of defect formation energy and mechanisms in lanthanum doped barium titanate by first-principles calculation II 誌謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVII 第一章 緒論 1 1.1前言 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1 鐵電陶瓷效應、應用 3 2.1.1鐵電效應 3 2.1.2 壓電、熱電效應 3 2.2 鈦酸鋇之性質與微結構 5 2.2.1鈦酸鋇之鐵電性、晶體結構 5 2.2.2電滯曲線 6 2.2.3介電性與相變化 7 2.2.4 正溫電阻特性 8 2.3 鈦酸鋇摻雜稀土元素 9 2.3.1 多層陶瓷電容器製程改良 9 2.3.2 稀土元素摻雜改善介電衰退 11 2.3.3 稀土元素之摻雜機制探討 11 2.3.4 鈦酸鋇摻雜鑭之電性變化 14 2.4 鈦酸鋇之缺陷計算文獻回顧 15 2.4.1 第一原理方法計算鈦酸鋇之本質缺陷 15 2.4.2 第一原理方法計算鈦酸鋇摻雜鑭之缺陷 16 2.4.3 在第一原理計算中考慮環境因素 17 2.4.4 分子動力學方法計算鈦酸鋇摻雜鑭之缺陷 17 第三章 模擬基礎理論回顧 20 3.1第一原理 (First-principles) 20 3.1.1密度泛函理論 (Density functional theory) 20 3.1.2 Hohenberg-Kohn定理 21 3.1.3 Kohn-Sham 方法 22 3.1.4 Kohn-Sham 方程式 22 3.1.5 交換關連能-局部密度近似 23 3.1.6 交換關連能-廣義梯度近似 23 3.1.7 贗式 24 3.1.8 平面波基 24 3.1.9 週期性邊界 25 第四章 模擬設計 26 4.1第一原理結構優化 26 4.2缺陷機制種類模型建立 27 4.3模型建立 27 4.4缺陷分布之基態能量計算 28 4.5 缺陷生成能計算 28 4.6二次相之考慮 29 4.7化學勢選取 29 4.8氧氣分壓對缺陷生成能之影響 30 4.9 能態密度分析 (Density Of States Analysis) 31 4.10 電荷密度差異分析(Charge Density Difference Analysis) 31 第五章 結果與討論 32 5.1交換關聯能選擇與收斂驗證 32 5.2.缺陷分布與能量關係探討 34 5.2.1電子補償機制-缺陷分布與能量關係探討 34 5.2.2鋇空缺補償機制-缺陷分布與能量關係探討 36 5.2.3鈦空缺補償機制-缺陷分布與能量關係探討 37 5.2.4氧格隙補償機制-缺陷分布與能量關係探討 40 5.2.5鈦空缺補償機制伴隨氧空缺生成-缺陷分布與能量關係探討 43 5.2.6電子補償機制伴隨氧空缺機制-缺陷分布與能量關係 44 5.2.7鋇、氧空缺補償機制-缺陷分布與能量關係 45 5.2.8鈦、氧空缺補償機制-缺陷分布與能量關係 46 5.3二次相之生成焓計算 47 5.4 純鈦酸鋇之本質缺陷生成能 52 5.4.1 純鈦酸鋇之化學勢 52 5.4.2 純鈦酸鋇之氧空缺在"2×2×2" 超胞計算 53 5.4.3 純鈦酸鋇之本質缺陷在3×3×3超胞計算 56 5.4.3.1 最低生成能在三維化學勢之分佈 57 5.5 鈦酸鋇摻雜鑭之缺陷生成能 62 5.5.1 四元系統之化學勢規範 62 5.5.2 缺陷生成能與化學勢探討 67 5.5.2.1 最低缺陷生成能在三維化學勢中之分佈 67 5.5.3缺陷機制與環境因素探討 67 5.6 純鈦酸鋇摻雜鑭之能態密度分析 73 5.7 電荷密度差異分析 73 第六章 結論 78 參考文獻 79

    1. Callister, W.D. and D.G. Rethwisch, Materials science and engineering: an introduction. Vol. 7. 2007: Wiley New York.
    2. 許志雄. 陶瓷與人類文明:小兵立大功–電子陶瓷. 2004; Available from: https://scitechvista.nat.gov.tw/c/ylSG.htm.
    3. Elias Siores , T.S., Derman Vatansever. Alternative Resources for Renewable Energy: Piezoelectric and Photovoltaic Smart Structures. 2012; Available from: https://www.intechopen.com/books/global-warming-impacts-and-future-perspective/alternative-resources-for-renewable-energy-piezoelectric-and-photovoltaic-smart-structures.
    4. Rase, D. and R. Roy, Phase equilibria in the system BaO–TiO2. Journal of the American Ceramic Society, 1955. 38(3): p. 102-113.
    5. Qiao, L. and X. Bi, Epitaxial Integration of Ferroelectric BaTiO3 with Semiconductor Si: From a Structure-Property Correlation Point of View. 2011: INTECH Open Access Publisher.
    6. Fu, D. and M. Itoh, Role of Ca off-centering in tuning the ferroelectric phase transitions in Ba (Zr, Ti) O3 system. arXiv preprint arXiv:1503.00406, 2015.
    7. Morrison, F.D., D.C. Sinclair, and A.R. West, Electrical and structural characteristics of lanthanum-doped barium titanate ceramics. Journal of Applied Physics, 1999. 86: p. 6355-6366.
    8. Huybrechts, B., K. Ishizaki, and M. Takata, The positive temperature coefficient of resistivity in barium titanate. Journal of materials science, 1995. 30(10): p. 2463-2474.
    9. Morrison, F.D., D.C. Sinclair, and A.R. West, Characterization of Lanthanum‐Doped Barium Titanate Ceramics Using Impedance Spectroscopy. Journal of the American Ceramic Society, 2001. 84(3): p. 531-538.
    10. Alles, A.B., V.R. Amarakoon, and V.L. Burdick, Positive temperature coefficient of resistivity effect in undoped, atmospherically reduced barium titanate. Journal of the American Ceramic Society, 1989. 72(1): p. 148-151.
    11. Morrison, F.D., D.C. Sinclair, and A.R. West, An Alternative Explanation for the Origin of the Resistivity Anomaly in La‐Doped BaTiO3. Journal of the American Ceramic Society, 2001. 84(2): p. 474-76.
    12. Waser, R., T. Baiatu, and K. Härdtl, Degradation of dielectric ceramics. Materials Science and Engineering: A, 1989. 109: p. 171-182.
    13. Baiatu, T., R. Waser, and K.H. Härdtl, dc Electrical Degradation of Perovskite‐Type Titanates: III, A Model of the Mechanism. Journal of the American Ceramic Society, 1990. 73(6): p. 1663-1673.
    14. Chazono, H. and H. Kishi, DC-electrical degradation of the BT-based material for multilayer ceramic capacitor with Ni internal electrode: impedance analysis and microstructure. Japanese Journal of Applied Physics, 2001. 40(9S): p. 5624.
    15. Yang, G., et al., Modulated and ordered defect structures in electrically degraded Ni–BaTiO 3 multilayer ceramic capacitors. Journal of applied physics, 2003. 94(9): p. 5990-5996.
    16. Sakabe, Y., et al., Effects of rare-earth oxides on the reliability of X7R dielectrics. Japanese journal of applied physics, 2002. 41(9R): p. 5668.
    17. Tsur, Y., T.D. Dunbar, and C.A. Randall, Crystal and defect chemistry of rare earth cations in BaTiO3. Journal of Electroceramics, 2001. 7(1): p. 25-34.
    18. Alahmed, Z. and H. Fu, First-principles determination of chemical potentials and vacancy formation energies in Pb Ti O 3 and Ba Ti O 3. Physical Review B, 2007. 76(22): p. 224101.
    19. Wei, S.-H. and S. Zhang, Chemical trends of defect formation and doping limit in II-VI semiconductors: The case of CdTe. Physical Review B, 2002. 66(15): p. 155211.
    20. Moriwake, H., C.A. Fisher, and A. Kuwabara, First-principles calculations of rare-earth dopants in BaTiO3. Japanese Journal of Applied Physics, 2009. 48(9S1): p. 09KC03.
    21. Makovec, D. and M. Drofenik, Microstructural Changes during the Reduction/Reoxidation Process in Donor‐Doped BaTiO3 Ceramics. Journal of the American Ceramic Society, 2000. 83(10): p. 2593-2599.
    22. Lee, S., C.A. Randall, and Z.K. Liu, Modified phase diagram for the barium oxide–titanium dioxide system for the ferroelectric barium titanate. Journal of the American Ceramic Society, 2007. 90(8): p. 2589-2594.
    23. Lin, M.-H. and H.-Y. Lu, Densification retardation in the sintering of La 2 O 3-doped barium titanate ceramic. Materials Science and Engineering: A, 2002. 323(1): p. 167-176.
    24. Finnis, M., A. Lozovoi, and A. Alavi, The oxidation of NiAl: What can we learn from ab initio calculations? Annu. Rev. Mater. Res., 2005. 35: p. 167-207.
    25. Johnston, K., et al., Sr Ti O 3 (001)(2× 1) reconstructions: First-principles calculations of surface energy and atomic structure compared with scanning tunneling microscopy images. Physical Review B, 2004. 70(8): p. 085415.
    26. Mallard, W.G. and P. Linstrom, NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Gaithersburg, MD, 2000. 20899.
    27. Dawson, J., H. Chen, and I. Tanaka, Combined Ab Initio and Interatomic Potentials Based Assessment of the Defect Structure of Mn-Doped SrTiO3. The Journal of Physical Chemistry C, 2014. 118(26): p. 14485-14494.
    28. Dawson, J., et al., First-principles study of intrinsic point defects in hexagonal barium titanate. Journal of Applied Physics, 2012. 111(9): p. 094108.
    29. Freeman, C.L., et al., A new potential model for barium titanate and its implications for rare-earth doping. Journal of Materials Chemistry, 2011. 21(13): p. 4861-4868.
    30. Freeman, C.L., et al., Energetics of Donor‐Doping, Metal Vacancies, and Oxygen‐Loss in A‐Site Rare‐Earth‐Doped BaTiO3. Advanced Functional Materials, 2013. 23(31): p. 3925-3928.
    31. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
    32. Myers, W. and W. Swiatecki, Nuclear properties according to the Thomas-Fermi model. Nuclear Physics A, 1996. 601(2): p. 141-167.
    33. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
    34. S. L. Dudarev, G.A.B., S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. PHYSICAL REVIEW B, 1998. 57(3): p. 1505.
    35. Lee, I.-H. and R.M. Martin, Applications of the generalized-gradient approximation to atoms, clusters, and solids. Physical Review B, 1997. 56(12): p. 7197.
    36. Kresse, G. and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758.
    37. Kittel, C. and D.F. Holcomb, Introduction to solid state physics. American Journal of Physics, 1967. 35(6): p. 547-548.
    38. Kresse, G., Software vasp, vienna, 1999; g. kresse, j. furthmüller. Phys. Rev. B, 1996. 54(11): p. 169.
    39. Kwei, G., et al., Structures of the ferroelectric phases of barium titanate. The Journal of Physical Chemistry, 1993. 97(10): p. 2368-2377.
    40. Wu, X., D. Vanderbilt, and D. Hamann, Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Physical Review B, 2005. 72(3): p. 035105.
    41. Wang, J., et al., Lattice, elastic, polarization, and electrostrictive properties of BaTiO 3 from first-principles. Journal of Applied Physics, 2010. 108(3): p. 034107.
    42. MATLAB and Statistics Toolbox Release 2015a, T.M., Inc., Natick, Massachusetts, United States.
    43. Wieder, H., Electrical behavior of barium titanatge single crystals at low temperatures. Physical Review, 1955. 99(4): p. 1161.
    44. Wemple, S., Polarization Fluctuations and the Optical-Absorption Edge in BaTi O 3. Physical Review B, 1970. 2(7): p. 2679.
    45. Schaefer, A., H. Schmitt, and A. Dorr, Elastic and piezoelectric coefficients of TSSG barium titanate single crystals. Ferroelectrics, 1986. 69(1): p. 253-266.
    46. Jain, A., et al., Formation enthalpies by mixing GGA and GGA+ U calculations. Physical Review B, 2011. 84(4): p. 045115.

    無法下載圖示 校內:2020-08-21公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE