簡易檢索 / 詳目顯示

研究生: 康勝霖
Kang, Sheng-Lin
論文名稱: 高解析圖案轉移與大面積結構均勻性之奈米壓印製程研究
Nanoimprint Lithography for High-Resolution Pattern Transfer and Uniform Large-Area Structure Fabrication
指導教授: 李永春
Lee, Yung-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 138
中文關鍵詞: 奈米壓印技術二氧化鈦熱壓印UV壓印大面積均勻性
外文關鍵詞: Nanoimprint Lithography, Titanium Dioxide, Thermal NIL, UV NIL, Large-Area Uniformity
相關次數: 點閱:32下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用奈米壓印技術於高解析度圖案轉移與大面積微奈米結構之製作,整體內容可分為兩大部分。
    第一部分為利用奈米壓印技術(Nanoimprint Lithography, NIL)結合金屬遮罩與乾式蝕刻製程,成功將奈米圖案轉移至具高折射率的二氧化鈦(TiO₂)薄膜,實現具高精度與良好垂直性的結構。製程中透過熱壓印成型、殘留層去除、金屬蒸鍍與舉離,完成遮罩定義,再結合蝕刻將圖案轉移至 TiO₂薄膜。
    第二部分則透過奈米壓印技術於6 吋玻璃基板上之大面積均勻性結構製作進行研究。分別採用熱壓成形式奈米壓印與UV 固化壓印技術,並透過結構高度、線寬與平面誤差等量測方式分析轉印品質。實驗結果顯示,熱壓製程可成功複製與模具尺寸高度吻合之結構,展現良好的圖案再現性;而 UV 固化壓印在多區域誤差比對中,誤差小於 1 μm 的面積占比皆達到 86%以上,顯示其具備穩定的大面積轉印能力與高均勻性表現。
    綜合而言,本研究建立一套結合高解析度、低成本與大面積可行性的奈米壓印製程,並成功將 TiO₂ 奈米結構製作與壓印均勻性驗證,對未來奈米光學元件與功能性表面製程之發展具有參考價值。

    This study applies nanoimprint lithography (NIL) for high-resolution pattern transfer and large-area micro/nanostructure fabrication, which is divided into two main parts.
    In the first part, NIL is combined with metal masking and dry etching to successfully transfer nanoscale patterns onto high-refractive-index titanium dioxide (TiO₂) thin films, resulting in structures with high precision and vertical profile. The fabrication process involves thermal imprinting, residual layer removal, metal deposition, and lift-off to define the metal mask, followed by reactive ion etching to transfer the pattern onto the TiO₂ layer.
    The second part investigates the fabrication of large-area uniform structures on 6-inch glass substrates using NIL. Both thermal nanoimprinting and UV-curing imprinting techniques are adopted. Structural height, linewidth, and planar deviation are analyzed to evaluate the transfer quality. Experimental results show that thermal imprinting can faithfully replicate mold dimensions with excellent pattern fidelity, while UV-curing NIL achieves over 86% of the area within ±1 μm error across multiple regions, demonstrating its high uniformity and large-area transfer capability.
    In conclusion, this study establishes a NIL process that integrates high resolution, low cost, and scalability, successfully demonstrating the fabrication of TiO₂ nanostructures and verifying large-area imprint uniformity. This process provides valuable insights for the future development of nanophotonic devices and functional surface manufacturing.

    摘要 i SUMMARY ii 致謝 xix 目錄 xx 圖目錄 xxiv 表目錄 xxvii 第一章 緒論 1 1.1 前言 1 1.2 奈米壓印技術研究回顧和介紹 2 1.2.1 熱壓成形奈米壓印 3 1.2.2 步進感光成形奈米壓印 4 1.2.3 軟微影技術 5 1.2.4 金屬轉印技術 7 1.3 犧牲層轉移式模具文獻回顧 9 1.4 論文架構 12 第二章 奈米壓印系統與實驗架構 14 2.1 奈米壓印系統介紹 14 2.2 奈米壓印製程前處理 17 2.2.1 基材與模仁表面清潔 17 2.2.2 矽母模表面處理 19 2.3複合式奈米壓印模仁 24 2.2.3 可撓性背板 PDMS及PDMS模仁 26 2.2.4 犧牲層模仁 PVA 29 2.2.5 複合式軟性模仁PFPE 31 第三章 奈米壓印製備金屬遮罩結合蝕刻二氧化鈦 34 3.1 二氧化鈦 34 3.2 矽母模製備 36 3.3 製程量測儀器介紹 40 3.4 奈米壓印實驗流程 44 3.4.1 奈米壓印膠材與製程 44 3.5 奈米壓印結合蝕刻製程量測結果 49 3.5.1 線光柵結構量測結果 49 3.5.2 超穎表面結構量測結果 50 第四章 壓印大面積均勻性結構 54 4.1 熱壓成型式奈米壓印 54 4.1.1 矽母模製備 54 4.1.2 大面積熱壓成形式奈米壓印製程 55 4.1.3 大面積熱壓成形式奈米壓印量測結果 58 4.2 UV固化壓印 61 4.2.1 矽母模製備 61 4.2.2 大面積UV固化壓印製程 62 4.2.3 大面積UV固化壓印量測結果 64 第五章 結論與未來展望 70 5.1 結論 70 5.2 未來展望 71 參考文獻 73 附錄一 單元結構量測 77 附錄二 梯度板量測 83

    [1] R. F. Pease and S. Y. Chou, "Lithography and other patterning techniques for future electronics," Proceedings of the IEEE, vol. 96, no. 2, pp. 248-270, 2008.
    [2] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub‐25 nm vias and trenches in polymers," Applied physics letters, vol. 67, no. 21, pp. 3114-3116, 1995.
    [3] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 14, no. 6, pp. 4129-4133, 1996.
    [4] M. Colburn et al., "Step and flash imprint lithography: a new approach to high-resolution patterning," in Emerging Lithographic Technologies III, 1999, vol. 3676: SPIE, pp. 379-389.
    [5] Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, "Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing," Langmuir, vol. 12, no. 16, pp. 4033-4038, 1996.
    [6] Y.-C. Lee and C.-Y. Chiu, "Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching," Journal of Micromechanics and Microengineering, vol. 18, no. 7, p. 075013, 2008.
    [7] 謝易達, “奈米壓印與金屬轉印技術應用於提升發光二極體發光效率,” 國立成功大學機械工程學系碩士論文, 2010.
    [8] C. D. Schaper and Charles. D, “MxL: pseudo-maskless high-throughput nanolithography,” Proc. SPIE. , vol. 5037, pp. 539-548, 2003.
    [9] C. D. Schaper and A. Miahnahri, “Polyvinyl alcohol templates for low cost, high resolution, complex printing,” J. Vac. Sci. Technol. B., vol. 22, no. 6, pp. 3323-3326, 2004.
    [10] C. D. Schaper, “Water-soluble polymer templates for high-resolution pattern formation and Materials Transfer Printing,” J. Micro. Nanolithogr. MEMS. MOEMS. , vol. 3, no. 1, pp.175-185 , 2004.
    [11] C. D. Schaper, “Planarizing surface topography by polymer adhesion to water-soluble templates with replicated null pattern,” Langmuir, vol. 20, no. 1, pp. 227–231, 2003.
    [12] C. D. Schaper, “Nanofabrication with water-dissolvable polymer masks of Polyvinyl Alcohol (PVA): MXL,” Proc. SPIE., vol. 5374, pp. 325–336, 2004.
    [13] Hatogai, Tetsuhiro, et al., “Patterning SiO/sub 2/layer using molecular transferlithography(MxL),” in International Microprocesses and Nanotechnology Conference, Oct. 2004, pp. 72-73.
    [14] C. D. Schaper, “Automating molecular transfer lithography at 25NM on 200mm wafers including site-remote coating of resist on dissolvable templates,” Proc. SPIE., Vol. 7637, p.76370U-2, 2010.
    [15] J. D. Bass, et al., “Transfer molding of nanoscale oxides using water-soluble templates,” ACS Nano., vol. 5, no. 5, pp. 4065–4072, 2011.
    [16] K. Nakamatsu, K. Tone, and S. Matsui, “Nanoimprint and lift-off process using poly(vinyl alcohol),” J. Appl. Phys., vol. 44, no. 11, pp. 8186–8188, 2005.
    [17] T. Ohtake, et al., “DNA nanopatterning with self-organization by using nanoimprint,” J. Vac. Sci. Technol. B., vol. 22, no. 6, p. 3275, 2004.
    [18] K. Nakamatsu, et al., “Nanoimprint and lift-off process using poly vinyl alcohol,” in International Microprocesses and Nanotechnology Conference, Oct. 2004, pp. 120-121.
    [19] 王泰毅, “高精度犧牲層轉移式奈米壓印微影技術與產業應用,” 國立成功大學機械工程學系碩士論文, 2019.
    [20] I.-S. Park, W. T. Nichols, and J. Ahn, “Nanosize patterning with nanoimprint lithography using poly(vinyl alcohol) transfer layer,” J. Appl. Phys., vol. 50, no. 6, 2011.
    [21] K. A. Addae-Mensah, R. S. Reiserer, and J. P. Wikswo, “Poly(vinyl alcohol) as a structure release layer for the microfabrication of polymer composite structures,” J. Micromech. Microeng., vol. 17, no. 7, 2007.
    [22] V.Linder, et al.,“Water-soluble sacrificial layers for surface micromachining,” Small., vol. 1, no. 7, pp. 730–736, 2005.
    [23] S. Si and M. Hoffmann, “Image inverting, topography and feature size manipulation using organic/inorganic bi-layer lift-off for nanoimprint template,” Microelectron. Eng., vol. 197, pp. 39–44, 2018.
    [24] K.-S. Han, et al., “Fabrication of 3D nano-structures using reverse imprint lithography,” Nanotechnology., vol. 24, no. 4, p. 045304, 2013.
    [25] J. A. Liddle and G. M. Gallatin, “Nanomanufacturing: A perspective,” ACS Nano., vol. 10, no. 3, pp. 2995–3014, 2016.
    [26] B. J. Bae, et al., “Fabrication of moth-eye pattern on a lens using Nano imprint lithography and PVA Template,” J. Korean. Inst. Sur. Eng., vol. 42, no. 2, pp. 59–62, 2009.
    [27] 杜珮綺, "奈米壓印暨黑光阻嵌入式軟性光罩之微奈米製程與應用," 國立成功大學機械工程學系碩士論文, 2019.
    [28] 朱致瑋, "奈米壓印微影製程應用於高頻表面聲波元件之製作與實驗量測," 國立成功大學機械工程學系碩士論文, 2020.
    [29] 陳維紳, "新型奈米壓印製程結合金屬輔助化學蝕刻應用於製作奈米結構," 國立成功大學機械工程學系碩士論文, 2022.
    [30] M. Semmlinger, et al., “Generating third harmonic vacuum ultraviolet light with a TIO2 metasurface,” Nano. Lett., vol. 19, no. 12, pp. 8972–8978, 2019.
    [31] N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater., vol. 13, no. 2, pp. 139–150, 2014.
    [32] Q. Guo, et al., “Compact single-shot metalens depth sensors inspired by eyes of jumping spiders,” Proc. Natl. Acad. Sci. U.S.A., vol. 116, no. 46, pp. 22959–22965, 2019.
    [33] R. C. Devlin, et al., “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. U.S.A., vol. 113, no. 38, pp. 10473–10478, 2016.
    [34] Report : Desert Silicon (https://desertsilicon.com/wp-content/uploads/Data-Sheet-Ti-1000.pdf)
    [35] M. R. Technology, "mr-I 7000R Series:thermoplastic polymer for nanoimprint lithography with optimized release properties," m.-I. R. s. d. sheet, Ed., ed, 2020.
    [36] J. A. Nelder and R. Mead, “A Simplex Method for Function Minimization,” J. Comput., vol. 7, pp. 308-313, 1965.

    無法下載圖示 校內:2027-08-14公開
    校外:2027-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE