簡易檢索 / 詳目顯示

研究生: 鄭文林
Cheng, Wen-Lin
論文名稱: 立體影像在大腸鏡模擬及光學微影分析之應用
3D Image Applications in Colonoscope and Lithography Analysis
指導教授: 陳立祥
Chen, Lih-Shyang
唐經洲
Tang, Jing-Jou
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 88
中文關鍵詞: 光學微影模擬視覺大腸鏡模擬
外文關鍵詞: Lithography Simulation Visualization, Colonoscope Simulation
相關次數: 點閱:106下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用Marching Cube演算法建立精緻化的立體醫學影像並應用於大腸鏡模擬系統,醫生可透過虛擬大腸探索來檢測腸壁,在探索期間,提供塗抹、挖掘等工具來幫助醫生由腸壁表面漸進式的觀察至大腸組織,透過體素揀選來快速的找尋大腸表面。
    由於立體醫學影像需占用較大的記憶體空間,因此我們使用減少區塊空間方法來解決此問題,每當使用者對物體進行操作時需重建三維物件,我們使用平行處理機制來加快重建速度。
    目前IC製程核心技術為光學微影,因為光的某些特性往往使得製造結果無法達到佈局工程師的預期結果,在實際製程前我們會先進行模擬,本研究利用Terrain Mesh Rendering技術來呈現模擬結果,利用表格法來偵測模擬與預期結果間的誤差。

    The research uses Marching Cube Algorithm to build an elaborate 3D medical image. We use the image to build a Colonoscope Simulation System. Doctors can examine bulge from intestinal wall and provide tools for doctors to observe information from surface into interior gradually. We use voxel picking method to find surface quickly.
    It can occupy much memory space for elaborate 3D medical image. For the reason, we use block reducing method to solve the question. It needs to reconstruct 3D Object for each manipulation. We build a parallel mechanism to speed up reconstruction.
    The major IC manufacturing process is Lithography. Because of the light characteristics, it can’t achieve results which engineers anticipate.
    We can proceed the simulation before design is manufactured. The research uses Terrain Mesh Rendering to show simulation result. It uses Table Method to detect errors between anticipation and practical result.

    § 中文摘要 § I § 英文摘要 § II § 誌謝 § III § 目錄 § IV § 圖目錄 § VI § 表目綠 § VIII 第1章 導論 1 1.1 章節提要 1 1.2 研究動機與目的 2 第2章 研究背景 4 2.1 三維物件重建 4 2.1.1 體素圖像 6 2.1.2 多邊形表面圖像 9 2.1.3 MCO建置演算法 10 2.2 積體電路製程模擬 16 2.2.1 光學微影製程 16 2.2.2 光學微影模擬 19 2.2.3 模擬結果分析與顯示 21 2.3 基礎系統架構介紹 22 第3章 大腸鏡模擬系統 24 3.1 系統架構 24 3.2 三維物件操作機制 27 3.2.1 揀選機制 27 3.2.2 物件復原機制 29 3.3 訊息傳遞機制 35 3.3.1 使用者介面訊息處理機制 35 3.4 小範圍的物體建立法 41 3.5 物體重建 45 3.6 球體相關挖掘模式 47 3.6.1 表面材質貼圖 47 3.6.2 即時性球體拉動挖掘 50 第4章 光學微影模擬展示系統 54 4.1 系統架構 54 4.1.1 元件介面 55 4.2 系統資料 56 4.2.1 專案資料 57 4.2.1.1 專案架構 58 4.2.1.2 模擬結果檔案轉換 59 4.2.2 三維物件資料 61 4.3 光學微影模擬結果分析與展示 67 4.3.1 誤差型態介紹 67 4.3.2 誤差型態偵測與3D視覺 71 第5章 結論 78 5.1 大腸鏡模擬系統展示 78 5.2 光學微影模擬展示 80 5.3 未來發展 83 § 參考文獻 § 85

    [1]蔣正彥,立體醫學影像的品質提昇與應用,台南,國立成功大學碩士論文,2008。
    [2]李崇偉,物體輪廓線模型及其3D影像在醫學上的應用,台南,國立成功大學碩士論文,2007。
    [3]鄧欣宗,立體醫學影像表面的產生與操作,台南,國立成功大學碩士論文,2007。
    [4]陳水和,針對奈米尺度微影之佈局樣本轉換品質分析,台南,南台科技大學碩士論文,2009。
    [5]賴冠妙,適用於光罩微影模擬之設計流程整合,台南,南台科技大學碩士論文,2009。
    [6]Frank D. Luna/著, 黃聖峰/譯, “3D遊戲程式設計入門:使用DirectX 9.0實作”, 博碩文化,2004。
    [7]Frank D. Luna, Introduction to 3D Game Programming with DirectX 9.0, WordwarePublishing, 2003.
    [8]Barsky, B. Computer graphics and geometric modeling using beta-splines. Springer-verlag, New York, 1988.
    [9]Bright, S., and Laflin, S, Shading of solid voxel models. Computer Graphics Forum 1986, 5,2, 131-138.
    [10]Chen, L. S., and Sontag, M, Representation, display, and manipulation of 3D digital scenes. Computer Vision, Graphics, and Image Processing, 1989, 48, 2, 190-216.
    [11]Chen, L. S., Herman, G. T., Reynolds, R. A., and Udupa, J. K, Surface shading in the Cuberille environment. IEEE Computer Graphics and Applications, 1985, 5, 12, 33-43.
    [12]Cohen, D., Kaufman, A., Bakalash, R., and Bergman, S, Real-time discrete shading. The Visual Computer , 1990, 6, 1, 16-27.
    [13]Gibson, S. F. F. Using distance maps for accurate surface reconstruction in sampled volumes. In IEEE Symposium on Volume Visualization, 1998, 23–30.
    [14]Gordon, D., and Reynolds, R. A. Image space shading of 3-dimensional objects. Computer Graphics and Image Processing, 1985, 29, 3. 361-376.
    [15]Hoehne, K. H., and Bernstein, R. Shading 3D-images from CT using grey-level gradients. IEEE Transactions on Medical Imaging , 1986, 5, 1, 45-57.
    [16]Höhne, K. H., Bomans, M., Pommert, A., Riemer, M., Schiers, C., Tiede, U., and Wiebecke, G. 3D visualization of tomographic volume data using the generalized voxel model. The Visual Computer, 1990, 6, 1, 28-36.
    [17]Kaufman, A. Volume graphics. IEEE Computer , 1993, 26, 7, 51-64.
    [18]Kobbelt, L. P., Botsch, M., Schwanecke, U., and Seidel, H. P. Feature sensitive surface extraction from volume data. In Proceedings of ACM SIGGRAPH 2001, 57–66.
    [19]Losasso, T. F., Schaefer, S., and Warren, J.. Dual contouring of hermite data. ACM Transactions on Graphics 2002, 21, 3, 339–346.
    [20]Lorensen, W. E., Cline, H. E., “Marching cubes: A high resolution 3D surface construction algorithm,” ACM SIGGRAPH Computer Graphics, 1987, v.21 n.4, p.163-169.
    [21]Magnusson, M., Lenz, R., and Danielsson, P. -E. Evaluation of methods for shaded display of CT volumes. Proceedings 9th International Conference Pattern Recognition, 1988, 2, 1287-1294.
    [22]Ratliff, F. Contour and contrast. Scientific American, 1972, 226, 6, 91-101.
    [23]ScanView. http://graphics.stanford.edu/software/s-canview/, 1972.
    [24]Tam, Y. W., and Davis, W. A. Display of 3D medical images. Proceedings on Graphics Interface, 1988, 78-86.
    [25]Yagel, R., Cohen, D., and Kaufman, A. Normal estimation in 3D discrete space. The visual computer, 1992, 8, 278-291.
    [26]H. Fukuda, R. Yamanaka, T. Terasawa, K. Hama, T. Tawa, and S. Okazaki, Characterization of Super-Resolution Photolithography, in Proceedings IEEE International Electron Device Meeting, 1992, 49-52.
    [27]S. Inoue, M. Asano, K. Hosaka, T. Sutani, T. Azuma, D. Kawamur, M. Kobayashi, S. Miyoshi, H. Kanemitsu, S. Tanaka, T. Kotani, Y. Tabata, K.Tsuchida, Y. Kohyama, and E. Kawamura, “Level-specific strategy of KrF microlithography for 130nm DRAMs,” in Proceedings IEEE International Electron Devices Meeting, Dec. 1999, pp. 809-812.
    [28]C. K. Kalus, S. List, A.Erdmann, R. Gordon, M. M. Callum, and A. Semmler, “Benchmarking of Available Rigorous Electromagnetic Field (EMF) Simulators for Phase-Shift Mask Applications,” Microelectronic Engineering, vol. 57-58, pp. 79-86, Sep. 2001.
    [29]M. Bernard, Polarization of Light. Pearson Education, 1998, pp. 29-103, available at http://www.phptr.com
    [30]A. K. Wong, “Level-specific Lithography Optimization for 1-Gb DRAM,” IEEE Trans. on Semiconductor Manufacturing, vol. 13, Fed. 2000.
    [31]“User,s guide for SPLAT version 6.0,” Electronics Research Laboratory, University of California Berkeley
    [32]K. K. H. Toh, “Two Dimensional Images and the Effects of Lens Aberration in Photolithography,” Master,s Thesis, University of California, Berkeley, 1998.

    下載圖示 校內:2014-09-08公開
    校外:2014-09-08公開
    QR CODE