研究生: |
羅鈞聿 Lo, Chun-Yu |
---|---|
論文名稱: |
以動態傅立葉轉換紅外線光譜儀探討對位聚苯乙烯摻合體結晶行為之研究 Crystallization behavior of syndiotactic polystyrene blends studied by in-situ FTIR |
指導教授: |
王紀
Wang, Chi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 175 |
中文關鍵詞: | 結晶 、相容性 、time-temperature-resolved FTIR 、聚苯乙烯 |
外文關鍵詞: | polystyrene, crystallization, time-temperature-resolved FTIR, miscibility |
相關次數: | 點閱:83 下載:8 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以50/50重量百分比,將對排聚苯乙烯(sPS,Mw~200 kg/mol)摻入不同分子量之亂排聚苯乙烯(aPS)中,分子量分別為Mw~3.68 kg/mol (aPS-M)、Mw~300 kg/mol (aPS-H)及Mw~1880 kg/mol (aPS-U);並以70/30、50/50及30/70重量百分比,將對排聚苯乙烯(sPS,Mw~200 kg/mol)與同排聚苯乙烯(iPS,Mw~400 kg/mol)混摻,得到不同比例雙結晶成分摻合體(sPS/iPS)。利用FTIR結合加熱裝置(hot stage),再搭配timebase軟體,形成一組time-temperature-resolved FTIR,來探討sPS在不同摻合體中,冷結晶、熔融結晶之結晶行為,以及結晶形態之變化。
冷結晶實驗首先探討neat sPS,經Avrami equation得到n值為~2.9,將k值利用WLF equation分析得到sPS於冷結晶下,分子鏈段運動排列所需的活化能~4.9 kJ/mol;其次,以50/50重量百分比在sPS摻入不同分子量aPS的系統中,sPS/aPS-M的k值會比neat sPS大,sPS/aPS-H及sPS/aPS-U則明顯比neat sPS小,而n值則在2.5附近;對於sPS/iPS的系統,混摻熔融態在OM下可發現有相分離存在,藉由相對結晶度對時間的作圖,可以看出具有二階段的結晶,n值會隨sPS/iPS混摻比例(70/30、50/50及30/70)不同有很大的變化,分別為2.7、2.2及1.1。
由熔融結晶實驗,探討在Tc=250 oC,發現sPS/aPS-M之k值比neat sPS明顯小很多,sPS/aPS-H及sPS/aPS-U則略小neat sPS。其次,sPS/iPS混摻在250 oC等溫結晶結束後,快速降溫至175 oC下等溫結晶,疑似有二階段的結晶,而n值會隨iPS混摻比例的提高明顯下降,分別為3.07、2.86、2.31。此外,高溫狀態下,部分FTIR吸收峰會有往低波數偏移的現象。
In this study, syndiotactic polystyrene (sPS, Mw~200 kg/mol) was blended with different tacticities polystyrene. We used 50/50 weight ratio to blend with three different kinds of molecular weight atactic polystyrene (aPS-M, Mw~3.68 kg/mol; aPS-H, Mw~300 kg/mol; aPS-U, Mw~1880 kg/mol), and blended different ratios (70/30, 50/50 and 30/70) with isotactic polystyrene (iPS, Mw~300 kg/mol). Then, I will discuss the crystallization behavior and morphology of these blends by a new design—time-temperature-resolved FTIR.
The first part is cold crystallization experiment. For neat sPS system, the average n value is about 2.9. Using WLF equation, we can figure out that the activation energy of the sPS chain diffusion is ca. 5.2 kJ/mol. In different molecular weight aPS system, the k values of sPS/aPS-H and sPS/aPS-U blend are bigger than the one of sPS, whereas the k value of sPS/aPS-M blend is smaller than the one of sPS. For all of these sPS/aPS blends, the average n value is about 2.5. In sPS/iPS blend system, we can find the phase separation on melt state. Going a step further to discuss the crystallization behavior, we can observe the two step crystallization obviously by plotting relative crystallinity versus time. And the n values have big difference with different iPS blend ratio (70/30, 50/50 and 30/70)-2.7, 2.2 and 1.1 individually.
In the melt crystallization experiments, we focus on a crystallized temperature-Tc=250 oC to discuss sPS/aPS blend. Unlike the cold crystallization result, the k values of sPS/aPS blend are smaller than the one of sPS. On the other hand, we design the two step crystallization experiment-250 oC to 175 oC to carry out the crystallization behavior of sPS/iPS blend system. The result shows that the higher the iPS blend ratio, the lower the n value-3.1, 2.9 and 2.3 individually. Besides, some FTIR absorbance peak would take place red shift at high temperature state.
[1] J. Natta, "Une nouvelle classe de polymeres d' -olefines ayant une regularite de structure exceptionnelle", J. Polym. Sci., 16 (1955)
[2] N. Ishihara, T. Seimiya, M. Kuramoto, and M. Uoi, "Crystalline syndiotactic polystyrene", Macromolecules, 19, 2464-2465 (1986)
[3] G. Guerra, V.M. Vitagliano, C. Derosa, V. Petraccone, and P. Corradini, "Polymorphism in melt crystallized syndiotactic polystyrene samples", Macromolecules, 23, 1539-1544 (1990)
[4] A.M. Evans, E.J.C. Kellar, J. Knowles, C. Galiotis, C.J. Carriere, and E.H. Andrews, "The structure and morphology of syndiotactic polystyrene injection molded coupons", Polymer Engineering and Science, 37, 153-165 (1997)
[5] E.J.C. Kellar, C. Galiotis, and E.H. Andrews, "Raman vibrational studies of syndiotactic polystyrene .1. Assignments in a conformational/crystallinity sensitive spectral region", Macromolecules, 29, 3515-3520 (1996)
[6] F. Auriemma, V. Petraccone, F. Dalpoggetto, C. Derosa, G. Guerra, C. Manfredi, and P. Corradini, "Mesomorphic form of syndiotactic polystyrene as composed of small imperfect crystals of the hexagonal (alpha) crystalline form", Macromolecules, 26, 3772-3777 (1993)
[7] C. Wang, M.L. Wang, and Y.D. Fan, "Crystallization, melting and morphology of syndiotactic/atactic polystyrene blends: Molecular weight effects of atactic polystyrene", Macromolecular Chemistry and Physics, 206, 1791-1802 (2005)
[8] B.K. Hong, W.H. Jo, S.C. Lee, and J. Kim, "Correlation between melting behaviour and polymorphism of syndiotactic polystyrene and its blend with poly(2,6-dimethyl-1,4-phenylene oxide)", Polymer, 39, 1793-1797 (1998)
[9] E.M. Woo, F.S. Wu, "On the multiple melting behavior of polymorphic syndiotactic polystyrene and its behavior in a miscible state", Macromolecular Chemistry and Physics, 199, 2041-2049 (1998)
[10] C. Wang, C.-L. Huang, Y.-W. Cheng, Y.-C. Chen, and J. Shong, "Radiation effects and re-crystallization mechanism of syndiotactic polystyrene with -crystalline form", Polymer, 48, 7393-7403 (2007)
[11] P.J. Lemstra, J. Postma, and G. Challa, "Molecular-weight dependence of spherulitic growth-rate of isotactic polystyrene", Polymer, 15, 757-759 (1974)
[12] T. Liu, J. Petermann, "Multiple melting behavior in isothermally cold-crystallized isotactic polystyrene", Polymer, 42, 6453-6461 (2001)
[13] T.X. Liu, J. Petermann, C.B. He, Z.H. Liu, and T.S. Chung, "Transmission electron microscopy observations on lamellar melting of cold-crystallized isotactic polystyrene", Macromolecules, 34, 4305-4307 (2001)
[14] T.X. Liu, W.C. Tjiu, and J. Petermann, "Transmission electron microscopy observations on fine structures of shish-kebab crystals of isotactic polystyrene by partial melting", Journal of Crystal Growth, 243, 218-223 (2002)
[15] Y.X. Duan, J.M. Zhang, D.Y. Shen, and S.K. Yan, "In situ FTIR studies on the cold-crystallization process and multiple melting behavior of isotactic polystyrene", Macromolecules, 36, 4874-4879 (2003)
[16] H. Xu, P. Cebe, "Heat capacity study of isotactic polystyrene: Dual reversible crystal melting and relaxation of rigid amorphous fraction", Macromolecules, 37, 2797-2806 (2004)
[17] J.M. Zhang, Y.X. Duan, D.Y. Shen, S.K. Yan, I. Noda, and Y. Ozaki, "Structure changes during the induction period of cold crystallization of isotactic polystyrene investigated by infrared and two-dimensional infrared correlation spectroscopy", Macromolecules, 37, 3292-3298 (2004)
[18] T. Kimura, H. Ezure, S. Tanaka, and E. Ito, "In situ FTIR spectroscopic study on crystallization process of isotactic polystyrene", Journal of Polymer Science Part B-Polymer Physics, 36, 1227-1233 (1998)
[19] R.D. Maier, R. Thomann, J. Kressler, R. Mulhaupt, and B. Rudolf, "The influence of stereoregularity on the miscibility of poly(propylene)s", Journal of Polymer Science Part B-Polymer Physics, 35, 1135-1144 (1997)
[20] B.K. Hong, W.H. Jo, and J. Kim, "Miscibility of syndiotactic polystyrene/atactic polystyrene blends by crystallization kinetics and enthalpy relaxation", Polymer, 39, 3753-3757 (1998)
[21] E.M. Woo, M.L. Lee, and Y.S. Sun, "Interactions between polystyrenes of different tacticities and thermal evidence for miscibility", Polymer, 41, 883-890 (2000)
[22] G.S.Y. Yeh, S.L. Lambert, "Crystallization kinetics of isotactic polystyrene from isotactic-atactic polystyrene blends", Journal of Polymer Science Part a-2-Polymer Physics, 10, 1183-& (1972)
[23] C. Wang, W.P. Liao, Y.W. Cheng, and T.L. Lin, "Miscible blends of syndiotactic polystyrene and atactic polystyrene. Part 1. Lamellar morphologies and diluent segregation", Polymer, 45, 961-971 (2004)
[24] C. Wang, W.P. Liao, M.L. Wang, and C.C. Lin, "Miscible blends of syndiotactic polystyrene and atactic polystyrene. Part 2. Depolarized light scattering studies and crystal growth rates", Polymer, 45, 973-981 (2004)
[25] C. Wang, C.C. Lin, and C.P. Chu, "Crystallization and morphological features of syndiotactic/atactic polystyrene blends at low temperatures near glass transition", Macromolecules, 39, 9267-9277 (2006)
[26] D. Debier, A.M. Jonas, and R. Legras, "Blends of polycarbonate and acrylic polymers: Crystallization of polycarbonate", Journal of Polymer Science Part B-Polymer Physics, 36, 2197-2210 (1998)
[27] T. Hashimoto, M. Itakura, and H. Hasegawa, "Late stage spinodal decomposition of a binary polymer mixture .1. critical test of dynamic scaling on scattering function", Journal of Chemical Physics, 85, 6118-6128 (1986)
[28] T. Hashimoto, M. Itakura, and N. Shimidzu, "Late stage spinodal decomposition of a binary polymer mixture .2. scaling analyses on qm(tau) and im(tau)", Journal of Chemical Physics, 85, 6773-6786 (1986)
[29] J.W. Cahn, "Phase separation by spinodal decomposition in isotropic systems", Journal of Chemical Physics, 42, 93-& (1965)
[30] G. Matsuba, K. Kaji, K. Nishida, T. Kanaya, and M. Imai, "Conformational change and orientation fluctuations of isotactic polystyrene prior to crystallization", Polymer Journal, 31, 722-727 (1999)
[31] H. Wang, K. Shimizu, E.K. Hobbie, Z.G. Wang, J.C. Meredith, A. Karim, E.J. Amis, B.S. Hsiao, E.T. Hsieh, and C.C. Han, "Phase diagram of a nearly isorefractive polyolefin blend", Macromolecules, 35, 1072-1078 (2002)
[32] H. Wang, K. Shimizu, H. Kim, E.K. Hobbie, Z.G. Wang, and C.C. Han, "Competing growth kinetics in simultaneously crystallizing and phase-separating polymer blends", Journal of Chemical Physics, 116, 7311-7315 (2002)
[33] E.M.W. Shu Hsien Li, "Miscibility in Blends of Isotactic/Syndiotactic Polystyrenes at Melt or Quenched Amorphous Solid State", Macromolecular Materials and Engineering, 291, 1397-1406 (2006)
[34] C. Wang, C.C. Lin, and L.C. Tseng, "Miscibility, crystallization and morphologies of syndiotactic polystyrene blends with isotactic polystyrene and with atactic polystyrene", Polymer, 47, 390-402 (2006)
[35] S. Gosav, R. Dinica, and M. Praisler, "Choosing between GC-FTIR and GC-MS spectra for an efficient intelligent identification of illicit amphetamines", Journal of Molecular Structure, 887, 269-278 (2008)
[36] Q. Li, C.Z. Lian, H. Zhang, Q.H. Liu, L.P. Zhan, Z. Lu, and C.H. Chen, "Analysis of TGA-FTIR detection for combustible materials", Nanjing, PEOPLES R CHINA (2003)
[37] C. Yan, Y. Zhang, Y. Hu, Y. Ozaki, D. Shen, Z. Gan, S. Yan, and I. Takahashi, "Melt Crystallization and Crystal Transition of Poly(butylene adipate) Revealed by Infrared Spectroscopy", The Journal of Physical Chemistry B, 112, 3311-3314 (2008)
[38] R.M.K. Michael S. Sevegney, Allen R. Siedle, Pamela A. Percha,, "FTIR spectroscopic investigation of thermal effects in semi-syndiotactic polypropylene", Journal of Polymer Science Part B: Polymer Physics, 43, 439-461 (2005)
[39] J. Xu, B.H. Guo, R. Yang, Q. Wu, G.Q. Chen, and Z.M. Zhang, "In situ FTIR study on melting and crystallization of polyhydroxyalkanoates", Polymer, 43, 6893-6899 (2002)
[40] R. Androsch, I. Kolesov, and H.J. Radusch, "Temperature-resolved derivative FTIR - Melting and formation of mesomorphic poly(ethylene)", Journal of Thermal Analysis and Calorimetry, 73, 59-70 (2003)
[41] J.Y. Yu, S. Asai, and M. Sumita, "Time-resolved FTIR study of crystallization behavior of melt-crystallized poly(phenylene sulfide)", Journal of Macromolecular Science-Physics, B39, 279-296 (2000)
[42] A. Pintar, R. Malacea, C. Pinel, G. Fogassy, and M. Besson, "In situ monitoring of catalytic three-phase enantioselective hydrogenation using FTIR/ATR spectroscopy", Applied Catalysis A: General, 264, 1-12 (2004)
[43] X. Ding, D. Fries, and B. Jun, "A study of hydrogel thermal-dynamics using Fourier transform infrared spectrometer", Polymer, 47, 4718-4725 (2006)
[44] T. Wu, Y. Li, Q. Wu, L. Song, and G. Wu, "Thermal analysis of the melting process of poly(trimethylene terephthalate) using FTIR micro-spectroscopy", European Polymer Journal, 41, 2216-2223 (2005)
[45] Y. Zhang, J.M. Zhang, Y.L. Lu, Y.X. Duan, S.K. Yan, and D.Y. Shen, "Glass transition temperature determination of poly(ethylene terephthalate) thin films using reflection-absorption FTIR", Macromolecules, 37, 2532-2537 (2004)
[46] F. Kimura, T. Kimura, A. Sugisaki, M. Komatsu, H. Sata, and E. Ito, "FTIR spectroscopic study on crystallization process of poly(ethylene-2,6-naphthalate)", Journal of Polymer Science Part B-Polymer Physics, 35, 2741-2747 (1997)
[47] J.M. Zhang, Y.X. Duan, H. Sato, D.Y. Men, S.K. Yan, I. Noda, and Y. Ozaki, "Initial crystallization mechanism of isotactic polystyrene from different states", Journal of Physical Chemistry B, 109, 5586-5591 (2005)
[48] E.B. Gowd, K. Tashiro, and C. Ramesh, "Structural phase transitions of syndiotactic polystyrene", Progress in Polymer Science, 34, 280-315 (2009)
[49] K. Tashiro, A. Yoshioka, "Molecular mechanism of solvent-induced crystallization of syndiotactic polystyrene glass. 2. Detection of enhanced motion of the amorphous chains in the induction period of crystallization", Macromolecules, 35, 410-414 (2002)
[50] S.-C. Wu, F.-C. Chang, "The crystallization characterization of bulk syndiotactic polystyrene sample: Immediate evidence from IR spectroscopy", Polymer, 45, 733-738 (2004)
[51] C. Wang, C.L. Huang, Y.C. Chen, G.L. Hwang, and S.J. Tsai, "Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: Crystallization and morphological features", Polymer, 49, 5564-5574 (2008)
[52] L.H. Sperling, "Physical polymer science", Chapter IV, John Wiley & Sons, Inc. (2001)
[53] C. Sagui, D.S. O’Gorman, and M. Grant, "Nucleation, growth and coarsening in phase -separating systems", Scanning Microscopy, 12, 3 (1998)
[54] M. Avrami, "Kinetics of Phase Change. I General Theory", The Journal of Chemical Physics, 7, 1103-1112 (1939)
[55] M. Avrami, "Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei", The Journal of Chemical Physics, 8, 212-224 (1940)
[56] R.E.P. Daniel Grenier, "Avrami analysis: Three experimental limiting factors", Journal of Polymer Science: Polymer Physics Edition, 18, 1655-1657 (1980)
[57] R.S. Stein, M.B. Rhodes, "Photographic light scattering by polyethylene films", J. Appl. Phys., 31, 1873 (1960)
[58] 林昶春, "對排聚苯乙烯摻和體結晶行為之研究", 國立成功大學化學工程研究所碩士論文 (2004)
[59] 王敏玲, "對排亂排聚苯乙烯摻和體結晶行為與結晶型態", 國立成功大學化學工程研究所碩士論文 (2002)
[60] 朱嘉平, "聚苯乙烯摻合體結晶行為之研究", 國立成功大學化學工程研究所碩士論文 (2006)
[61] 黃威泓, "對排/同排聚苯乙烯摻合體結晶行為之研究", 國立成功大學化學工程研究所碩士論文 (2007)
[62] Y.S. Sun, E.M. Woo, M.C. Wu, and R.-M. Ho, "Polymorphism and Phase Transitions upon Annealing in Solvent-Cast vs Quenched Syndiotactic Polystyrene and Its Blends with Atactic Polystyrene", Macromolecules, 36, 8415-8425 (2003)
[63] P. Painter, M. Sobkowiak, and Y. Park, "Vibrational Relaxation in Atactic Polystyrene: An Infrared Spectroscopic Study", Macromolecules, 40, 1730-1737 (2007)
[64] C. Wang, C.-C. Lin, and C.-P. Chu, "Crystallization and morphological features of syndiotactic polystyrene induced from glassy state", Polymer, 46, 12595-12606 (2005)
[65] A. Yoshioka, K. Tashiro, "Thermally- and solvent-induced crystallization kinetics of syndiotactic polystyrene viewed from time-resolved measurements of infrared spectra at the various temperatures (1) estimation of glass transition temperature shifted by solvent absorption", Polymer, 44, 6681-6688 (2003)
[66] Fu Sun Wu, E. M. Woo, "Comparison of crystallization kinetics of miscible blends of syndiotactic polystyrene with atactic polystyrene or poly(1,4-dimethyl-p-phenylene oxide)", Polymer Engineering & Science, 39, 825-832 (1999)