| 研究生: |
何承益 Ho, Cheng-I |
|---|---|
| 論文名稱: |
混合有限元素及PIC法模擬在毛細管電泳中帶電離子之遷移 Hybrid Finite-Element and Particle-in-Cell Method for Simulating Charged Ion Migration in Capillary Zone Electrophoresis |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 有限元素 、PIC法 、帶電離子遷移 、毛細管電泳 、德拜長度 、轉角圓弧半徑 |
| 外文關鍵詞: | finite-element, particle-in-cell, charged ion migration, capillary zone electrophoresis, Debye length, corner arc radius |
| 相關次數: | 點閱:116 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一種混合有限元素及PIC法的數值模式,來模擬在十字型毛細管電泳系統中,不同帶電離子的遷移現象。毛細管電泳系統主要是藉由具有不同電荷質量比的離子遷移來分離分析物。不同於傳統的數值方法,這種方法可以用於模擬不同帶電離子,在毛細管電泳系統中的遷移現象,以及處理複雜的幾何形狀和不規則的邊界條件。
本論文的研究重點為,在不同的德拜長度和轉角圓弧半徑時,對於在注入和分離過程中,正離子和負離子遷移現象的影響。數值結果指出,這些效應明顯地影響不同電荷分析物的遷移現象,如下所示。
由於正離子和負離子於溶劑中受到相反電力作用。因此,正離子比負離子較快遷移至分離流道。而隨著德拜長度減少,正離子和負離子會較快進入分離流道。同時,使得較多的正離子往分離流道遷移,並遷移至離注入流道較遠處。而負離子則會遷移至比正離子更接近分離流道的上壁面處。研究結果指出較小的德拜長度可以減少注入過程時間,以及在分離過程中提供更多分析物。
在注入的過程中,隨著增加轉角圓弧半徑,使得正離子和負離子不僅更快遷移至分離流道,並遷移至分離流道中離注入流道較遠處。而在分離的過程中,隨著增加轉角圓弧半徑,使得正離子和負離子的分佈會比較寬,且需要較長的時間使正離子和負離子可以完全分離。因此,當轉角圓弧半徑較大時,則需要更多的時間來注入和分離不同帶電離子。
數值的結果指出在毛細管電泳系統中,電場對於不同帶電離子遷移現象的影響,具有重要的意涵。這些發現對於毛細管電泳系統的設計、控制及發展,提出有助益的見解。
The dissertation proposed a numerical model of hybrid finite-element and particle-in-cell method to simulate charged ion migration in the cross-channel capillary zone electrophoresis system. Analytes separated by capillary zone electrophoresis are governed by the ion migration with different charge-to-mass ratios. Different to the traditional numerical method, this method can be used to simulate the migration phenomenon of the differently charged ions for handling complex geometries and irregular boundary conditions in the capillary zone electrophoresis system.
This research focused on the effects of Debye length and corner arc radius on the migration phenomena of the positive and negative ions in the injection and separation process. The numerical results indicate that these effects can affect obviously the migration phenomena of differently charged analytes as expressed in the following.
The positive and negative ions are subject to opposite electric field force relative to the buffer solvent. Hence, the positive ions migrate into the separation channel faster than the negative ions. With decreasing the Debye length, the positive and negative ions are faster carried into the separation channel. Furthermore, more positive ions migrate into the separation channel and migrate more far away from the injection channel. Meanwhile, the negative ions migrate more close to the upper wall of the separation channel. The results indicate that the short Debye length can shorten time for the injection process and provide more analytes for the separation process.
In the injection process, the positive and negative ions migrate not only faster into the separation channel but also more far away from the injection channel with increasing the corner arc radius. In the separation process, the zones of positive and negative ions are wider and the time to completely separate is longer with increasing the corner arc radius. Consequently, as corner arc radius is larger, more time is needed to inject and separate charged ions.
The numerical results provide useful insights into the influences of the electric field on the migration of differently charged ions in capillary zone electrophoresis systems. These findings have significant implications for design and control of capillary zone electrophoresis systems.
[1] Tiselius, A., “A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures,” Transactions of the Faraday Society, Vol. 33, pp. 524-531 (1937).
[2] Hjertén, S., “Free Zone Electrophoresis,” Chromatographic Reviews, Vol. 9, No. 2, pp. 122-219 (1967)
[3] Virtanen, R., “Zone Electrophoresis in a Narrow-bore Tube Employing Potentiometric Detection: a Theoretical and Experimental Study,” Acta Polytechnica Scandinavica: Chemistry including Metallurgy Series, Vol. 123, pp. 1-67 (1974).
[4] Jorgenson, J. W. and Lukacs, K. D., “Zone Electrophoresis in Open-Tubular Glass Capillaries,” Analytical Chemistry, Vol. 53, No. 8, pp. 1298-1302 (1981).
[5] Jorgenson, J. W. and Lukacs, K. D., “Free-zone Electrophoresis in Glass Capillaries,” Clinical Chemistry, Vol. 27, No. 9, pp. 1551-1553 (1981).
[6] Jorgenson, J. W. and Lukacs, K. D., “High Resolution Separations Based on Electrophoresis and Electroosmosis,” Journal of Chromatography A, Vol. 218, pp. 209-216 (1981).
[7] Jorgenson, J. W. and Lukacs, K. D., “Capillary Zone Electrophoresis,” Science, Vol. 222, No. 4621, pp. 266-272 (1983).
[8] Manz, A., Graber, N., and Widmer, H. M., “Miniaturized Total Chemical Analysis Systems: a Novel Concept for Chemical Sensing,” Sensors and Actuators B: Chemical, Vol. 1, No. 1-6, pp. 244-248 (1990).
[9] Harrison, D. J., Manz, A., Fan, Z., Lüdi, H., and Widmer, H. M., “Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip,” Analytical Chemistry, Vol. 64, No. 17, pp. 1926-1932 (1992).
[10] Harrison, D. J., Glavina, P. G., and Manz, A., “Towards Miniaturized Electrophoresis and Chemical Analysis Systems on Silicon: an Alternative to Chemical Sensors,” Sensors and Actuators B: Chemical, Vol. 10, No. 2, pp. 107-116 (1993).
[11] Seiler, K., Harrison, D. J., and Manz, A., “Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, and Separation Efficiency,” Analytical Chemistry, Vol. 65, No. 10, pp. 1481-1488 (1993).
[12] Fan, Z. H. and Harrison, D. J., “Micromachining of Capillary Electrophoresis Injectors and Separators on Glass Chips and Evaluation of Flow at Capillary Intersections,” Analytical Chemistry, Vol. 66, No. 1, pp. 177-184 (1994).
[13] Seiler, K., Fan, Z. H., Fluri, K., and Harrison, D. J., “Electroosmotic Pumping and Valveless Control of Fluid Flow within a Manifold of Capillaries on a Glass Chip,” Analytical Chemistry, Vol. 66, No. 20, pp. 3485-3491 (1994).
[14] Effenhauser, C. S., Manz, A., and Widmer, H. M., “Glass Chips for High-speed Capillary Electrophoresis Separations with Submicrometer Plate Heights,” Analytical Chemistry, Vol. 65, No. 19, pp. 2637-2642 (1993).
[15] Chao, Y. C. and Whang, C. W., “Capillary Zone Electrophoresis of Eleven Priority Phenols with Indirect Fluorescence Detection,” Journal of Chromatography A, Vol. 663, No. 2, pp. 229-237 (1994).
[16] Culbertson, C. T., and Jorgenson, J. W., “Flow Counterbalanced Capillary Electrophoresis,” Analytical Chemistry, Vol. 66, No. 7, pp. 955-962 (1994).
[17] Jacobson. S. C., Hergenröder, R., Koutny, L. B., Warmack, R. J., and Ramsey, J. M., “Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices,” Analytical Chemistry, Vol. 66, No. 7, pp. 1107-1113 (1994).
[18] Burggraf, N., Manz, A., Verpoorte, E., Effenhauser, C. S., Widmer, H. M., and de Rooij N. F., “A Novel Approach to Ion Separations in Solution: Synchronized Cyclic Capillary Electrophoresis (SCCE),” Sensors and Actuators B: Chemical, Vol. 20, No. 2-3, pp. 103-110 (1994).
[19] Effenhauser, C. S., Paulus, A., Manz, A., and Widmer, H. M., “High-speed Separation of Antisense Oligonucleotides on a Micromachined Capillary Electrophoresis Device,” Analytical Chemistry, Vol. 66, No. 18, pp. 2949-2953 (1994).
[20] Jacobson, S. C., Koutny, L. B., Hergenröder, R., Moore, A. W. Jr., and Ramsey, J. M., “Microchip Capillary Electrophoresis with an Integrated Postcolumn Reactor,” Analytical Chemistry, Vol. 66, No. 20, pp. 3472-3476 (1994).
[21] Dabek-Zlotorzynska, E. and Dlouhy, J. F., “Capillary Zone Electrophoresis with Indirect UV Detection of Organic Anions Using 2,6-naphthalenedicarboxylic Acid,” Journal of Chromatography A, Vol. 685, No. 1, pp. 145-153 (1994).
[22] Lurie, I. S., Klein, R. F. X., Cason. T. A. D., LeBelle, M. J., Brenneisen, R., and Weinberger, R.E., “Chiral Resolution of Cationic Drugs of Forensic Interest by Capillary Electrophoresis with Mixtures of Neutral and Anionic Cyclodextrins,” Analytical Chemistry, Vol. 66, No. 22, pp. 4019-4026 (1994).
[23] Schneede, J., and Ueland, P. M., “Application of Capillary Electrophoresis with Laser-Induced Fluorescence Detection for Determination of Methylmalonic Acid in Human Serum,” Analytical Chemistry, Vol. 67, No. 5, pp. 812-819 (1995).
[24] Effenhauser, C. S., Manz, A., and Widmer, H. M., “Manipulation of Sample Fractions on a Capillary Electrophoresis Chip,” Analytical Chemistry, Vol. 67, No. 13, pp. 2284-2287 (1995).
[25] Dolník, V. and Dolníková, J., “Capillary Zone Electrophoresis of Organic Acids in Serum of Critically Ill Children,” Journal of Chromatography A, Vol. 716, No. 1-2, pp. 269-277 (1995).
[26] Bao, M. and Wang, W., “Future of Microelectromechanical Systems (MEMS),” Sensors and Actuators A: Physical, Vol. 56, No. 1-2, pp. 135-141 (1996).
[27] Lin, C. E., Chang, C. C., Lin, W. C., and Lin, E. C., “Capillary Zone Electrophoretic Separation of β-blockers Using Citrate Buffer at Low pH,” Journal of Chromatography A, Vol. 753, No. 1, pp. 133-138 (1996).
[28] Jacobson, S. C. and Ramsey, J. M., “Electrokinetic Focusing in Microfabricated Channel Structures,” Analytical Chemistry, Vol. 69, No. 16, pp. 3212-3217 (1997).
[29] Mala, G. M., Li, D., and Dale, J. D., “Heat Transfer and Fluid Flow in Microchannels,” International Journal of Heat and Mass Transfer, Vol. 40, No. 13, pp. 3079-3088 (1997).
[30] Mala, G. M., Li, D., Werner, C., Jacobasch, H. J., and Ning, Y. B., “Flow Characteristics of Water through a Microchannel between Two Parallel Plates with Electrokinetic Effects,” International Journal of Heat and Fluid Flow, Vol. 18, No. 5, pp. 489-496 (1997).
[31] Culbertson, C. T., Jacobson, S. C., and Ramsey, J. M., “Dispersion Sources for Compact Geometries on Microchips,” Analytical Chemistry, Vol. 70, No. 18, pp. 3781-3789 (1998).
[32] Liu, S., Shi, Y., Ja, W. W., and Mathies, R. A., “Optimization of High-Speed DNA Sequencing on Microfabricated Capillary Electrophoresis Channels,” Analytical Chemistry, Vol. 71, No. 3, pp. 566-573 (1999).
[33] Shultz-Lockyear, L. L., Colyer, C. L., Fan, Z. H., Roy, K. I., and Harrison, D. J., “Effects of Injector Geometry and Sample Matrix on Injection and Sample Loading in Integrated Capillary Electrophoresis Devices,” Electrophoresis, Vol. 20, No. 3, pp. 529-538 (1999).
[34] Zhang, B., Liu, H., Karger, B. L., and Foret F., “Microfabricated Devices for Capillary Electrophoresis−Electrospray Mass Spectrometry,” Analytical Chemistry, Vol. 71, No. 15, pp. 3258-3264 (1999).
[35] Jacobson, S. C., Ermakov, S. V., and Ramsey, J. M., “Minimizing the Number of Voltage Sources and Fluid Reservoirs for Electrokinetic Valving in Microfluidic Devices,” Analytical Chemistry, Vol. 71, No. 15, pp. 3273-3276 (1999).
[36] Shihabi, Z. K., “Capillary Electrophoresis of Double-stranded DNA in an Untreated Capillary,” Journal of Chromatography A, Vol. 853, No. 1-2, pp. 349-354 (1999).
[37] Polson, N. A. and Hayes, M. A., “Electroosmotic Flow Control of Fluids on a Capillary Electrophoresis Microdevice Using an Applied External Voltage,” Analytical Chemistry, Vol. 72, No. 5, pp. 1088-1092 (2000).
[38] Culbertson, C. T., Ramsey, R. S., and Ramsey, J. M., “Electroosmotically Induced Hydraulic Pumping on Microchips: Differential Ion Transport,” Analytical Chemistry, Vol. 72, No. 10, pp. 2285-2291 (2000).
[39] Paegel, B. M., Hutt, L. D., Simpson, P. C., and Mathies, R. A., “Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels,” Analytical Chemistry, Vol. 72, No. 14, pp. 3030-3037 (2000).
[40] Arundell, M., Whalley, P. D., and Manz, A., “Indirect Fluorescence Detection of Phenolic Compounds by Capillary Electrophoresis on a Glass Device,” Fresenius' Journal of Analytical Chemistry, Vol. 367, No. 8, pp. 686-691 (2000).
[41] Lagally, E. T., Medintz, I., and Mathies, R. A., “Single-molecule DNA Amplification and Analysis in an Integrated Microfluidic Device,” Analytical Chemistry, Vol. 73, No. 3, pp. 565-570 (2001).
[42] Molho, J. I., Herr, A. E., Mosier, B. P., Santiago, J. G., and Kenny, T. W., “Optimization of Turn Geometries for Microchip Electrophoresis,” Analytical Chemistry, Vol. 73, No. 6, pp. 1350-1360 (2001).
[43] Zhang, C. X. and Manz, A., “Narrow Sample Channel Injectors for Capillary Electrophoresis on Microchips,” Analytical Chemistry, Vol. 73, No. 11, pp. 2656-2662 (2001).
[44] Crabtree, H. J., Cheong, E. C. S., Tilroe, D. A., and Backhouse, C. J., “Microchip Injection and Separation Anomalies Due to Pressure Effects,” Analytical Chemistry, Vol. 73, No. 17, pp. 4079-4086 (2001).
[45] Fu, L. M., Yang, R. J., Lee, G. B., and Liu, H. H., “Electrokinetic Injection Techniques in Microfluidic Chips,” Analytical Chemistry, Vol. 74, No. 19, pp. 5084-5091 (2002).
[46] Fu, L. M., Yang, R. J., and Lee, G. B., “Electrokinetic Focusing Injection Methods on Microfluidic Devices,” Analytical Chemistry, Vol. 75, No. 8, pp. 1905-1910 (2003).
[47] Sinton, D., Ren, L., and Li, D., “Visualization and Numerical Modelling of Microfluidic on-chip Injection Processes,” Journal of Colloid and Interface Science, Vol. 260, No. 2, pp. 431-439 (2003).
[48] Sinton, D., Ren, L., and Li, D., “A Dynamic Loading Method for Controlling on-chip Microfluidic Sample Injection,” Journal of Colloid and Interface Science, Vol. 266, No. 2, pp. 448-456 (2003).
[49] Lin, C. H., Yang, R. J., Tai, C. H., Lee, C. Y., and Fu, L. M., “Double-L Injection Technique for High Performance Capillary Electrophoresis Detection in Microfluidic Chips,” Journal of Micromechanics and Microengineering, Vol. 14, No. 4, pp. 639-646 (2004).
[50] Baldock, S. J, Fielden, P. R, Goddard, N. J, Kretschmer, H. R, Prest, J. E., and Brown, B. J. T., “Novel Variable Volume Injector for Performing Sample Introduction in a Miniaturised Isotachophoresis Device,” Journal of Chromatography A, Vol. 1042, No. 1-2, pp. 181-188 (2004).
[51] Castaño-Álvarez, M., Fernández-Abedul, M. T., and Costa-García, A., “Poly(methylmethacrylate) and Topas Capillary Electrophoresis Microchip Performance with Electrochemical Detection,” Electrophoresis, Vol. 26, No. 16, pp. 3160-3168 (2005).
[52] Lacharme, F. and Gijs, M. A. M., “Pressure Injection in Continuous Sample Flow Electrophoresis Microchips,” Sensors and Actuators B: Chemical, Vol. 117, No. 2, pp. 384-390 (2006).
[53] Gong, M., Wehmeyer, K. R., Stalcup, A. M., Limbach, P. A., and Heineman, W. R., “Study of Injection Bias in a Simple Hydrodynamic Injection in Microchip CE,” Electrophoresis, Vol. 28, No. 10, pp. 1564-1571 (2007).
[54] Kaigala, G. V., Hoang, V. N., Stickel, A., Lauzon, J., Manage, D., Pilarski, L. M., and Backhouse, C. J., “An Inexpensive and Portable Microchip-based Platform for Integrated RT-PCR and Capillary Electrophoresis,” Analyst, Vol. 133, No. 3, pp. 331-338 (2008).
[55] Mühlberger, H., Hwang, W., Guber, A. E., Saile, V., and Hoffmann, W., “Polymer Lab-on-a-Chip System With Electrical Detection,” IEEE Sensors Journal, Vol. 8, No. 5, pp. 572-579 (2008).
[56] Yanagisawa, N. and Dutta, D., “Pressure Generation at the Junction of Two Microchannels with Different Depths,” Electrophoresis, Vol. 31, No. 12, pp. 2080-2088 (2010).
[57] Xia, L. and Dutta, D., “A Microchip Device for Enhancing Capillary Zone Electrophoresis Using Pressure-Driven Backflow,” Analytical Chemistry, Vol. 84, No. 22, pp. 10058-10063 (2012).
[58] Viefhues, M., Regtmeier, J., and Anselmetti, D., “Fast and Continuous-flow Separation of DNA-complexes and Topological DNA Variants in Microfluidic Chip Format,” Analyst, Vol. 138, No. 1, pp. 186-196 (2013).
[59] Song, Y., Peng, R., Wang, J., Pan, X., Sun, Y., and Li, D., “Automatic Particle Detection and Sorting in an Electrokinetic Microfluidic Chip,” Electrophoresis, Vol. 34, No. 5, pp. 684-690 (2013).
[60] Xia, L. and Dutta, D., “Microfluidic Flow Counterbalanced Capillary Electrophoresis,” Analyst, Vol. 138, No. 7, pp. 2126-2133 (2013).
[61] Segato, T. P., Bhakta, S. A., Gordon, M. T., Carrilho, E., Willis, P. A., Jiao, H., and Garcia, C. D., “Microfab-less Microfluidic Capillary Electrophoresis Devices,” Analytical Methods, Vol. 5, No. 7, pp. 1652-1657 (2013).
[62] Burgreen, D. and Nakache, F. R., “Electrokinetic Flow in Ultrafine Capillary Slits,” The Journal of Physical Chemistry, Vol. 68, No. 5, pp. 1084-1091 (1964).
[63] Rice, C. L. and Whitehead, R., “Electrokinetic Flow in a Narrow Cylindrical Capillary,” The Journal of Physical Chemistry, Vol. 69, No. 11, pp. 4017-4024 (1965).
[64] Andreev, V. P. and Lisin, E. E., “On The Mathematical Model of Capillary Electrophoresis,” Chromatographia, Vol. 37, No. 3-4, pp. 202-210 (1993).
[65] Yang, C., and Li, D., “Electrokinetic effects on pressure-driven liquid flows in rectangular microchannels,” Journal of Colloid and Interface Science, Vol. 194, No. 1, pp. 95-107 (1997).
[66] Andreev, V. P., Dubrovsky, S. G., and Stepanov, Y. V., “Mathematical Modeling of Capillary Electrophoresis in Rectangular Channels,” Journal of Microcolumn Separations, Vol. 9, No. 6, pp. 443-450 (1997).
[67] Dutta, P. and Beskok, A., “Analytical Solution of Combined Electroosmotic/Pressure Driven Flows in Two-Dimensional Straight Channels: Finite Debye Layer Effects,” Analytical Chemistry, Vol. 73, No. 9, pp.1979-1986 (2001).
[68] Pennathur, S. and Santiago, J. G., “Electrokinetic Transport in Nanochannels. 1. Theory,” Analytical Chemistry, Vol. 77, No. 21, pp. 6772-6781 (2005).
[69] Dutta, D., “Electrokinetic Transport of Charged Samples through Rectangular Channels with Small Zeta Potentials,” Analytical Chemistry, Vol. 80, No. 12, pp. 4723-4730 (2008).
[70] Joekar-Niasar, V., Schotting, R., and Leijnse, A., “Analytical Solution of Electrohydrodynamic Flow and Transport in Rectangular Channels: Inclusion of Double Layer Effects,” Computational Geosciences, Vol. 17, No. 3, pp. 497-513 (2013).
[71] Movahed, S., Kamali, R., Eghtesad, M., and Khosravifard, A., “Analytical Study of Mixed Electroosmotic-pressure-driven Flow in Rectangular Micro-channels,” Theoretical and Computational Fluid Dynamics, Vol. 27, No. 5, pp. 599-616 (2013).
[72] Patankar, N. A. and Hu, H. H., “Numerical Simulation of Electroosmotic Flow,” Analytical Chemistry, Vol. 70, No. 9, pp. 1870-1881 (1998).
[73] Ermakov, S. V., Jacobson, S. C., and Ramsey, J. M., “Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures,” Analytical Chemistry, Vol. 70, No. 21, pp. 4494-4504 (1998).
[74] Ermakov, S. V., Jacobson, S. C., and Ramsey, J. M., “Computer Simulations of Electrokinetic Injection Techniques in Microfluidic Devices,” Analytical Chemistry, Vol. 72, No. 15, pp. 3512-3517 (2000).
[75] Bianchi, F., Ferrigno, R., and Girault, H. H., “Finite Element Simulation of an Electroosmotic-driven Flow Division at a T-junction of Microscale Dimensions,” Analytical Chemistry, Vol. 72, No. 9, pp. 1987-1993 (2000).
[76] Griffiths, S. K. and Nilson, R. H., “Low-Dispersion Turns and Junctions for Microchannel Systems,” Analytical Chemistry, Vol. 73, No. 2, pp. 272-278 (2001).
[77] Yang, R. J., Fu, L. M., and Lin, Y. C., “Electroosmotic Flow in Microchannels,” Journal of Colloid and Interface Science, Vol. 239, No. 1, pp. 98-105 (2001).
[78] Alam, J. and Bowman, J. C., “Energy-Conserving Simulation of Incompressible Electro-Osmotic and Pressure-Driven Flow,” Theoretical and Computational Fluid Dynamics, Vol. 16, No. 2, pp. 133-150 (2002).
[79] Ren, L., Sinton, D., and Li, D., “Numerical Simulation of Microfluidic Injection Processes in Crossing Microchannels,” Journal of Micromechanics and Microengineering, Vol. 13, No. 5, pp. 739-747 (2003).
[80] Tang, G. Y., Yang, C., Chai, C. J., and Gong, H. Q., “Modeling of Electroosmotic Flow and Capillary Electrophoresis with the Joule Heating Effect: The Nernst-Planck Equation versus the Boltzmann Distribution,” Langmuir, Vol. 19, No. 26, pp. 10975-10984 (2003).
[81] Guarnieri, F. A., Kler, P. A., and Berli, C. L. A., “Numerical Simulation of Electrokinetic Flow in Microfluidic Chips,” Mecánica Computacional, Vol. 25, No. 28, pp. 2573-2583 (2006).
[82] Hsu, M. Y. and Hung, C. I., “Simulation of Charged Ion Migration in Capillary Zone Electrophoresis System Using Particle in Cell Method,” Japanese Journal of Applied Physics, Vol. 46, No. 6A, pp. 3605-3612 (2007).
[83] Hsu, M. Y. and Hung, C. I., “Simulation of Absolute Mobility Ionic Migration in Non-Aqueous Capillary Zone Electrophoresis,” International Journal of Transport Phenomena, Vol. 11, No. 1, pp. 19-38 (2009).
[84] Kler, P. A., López, E. J., Dalcín, L. D., Guarnieri, F. A., and Storti, M. A., “High Performance Simulations of Electrokinetic Flow and Transport in Microfluidic Chips,” Computer Methods in Applied Mechanics and Engineering, Vol. 198, No. 30-32, pp. 2360-2367 (2009).
[85] Barz, D. P. J., “Comprehensive Model of Electrokinetic Flow and Migration in Microchannels with Conductivity Gradients,” Microfluidics and Nanofluidics, Vol. 7, No. 2, pp. 249-265 (2009).
[86] Prachittham, V., Picasso, M., and Gijs, M. A. M., “Adaptive Finite Elements with Large Aspect Ratio for Mass Transport in Electroosmosis and Pressure-Driven Microflows,” International Journal for Numerical Methods in Fluids, Vol. 63, No. 9, pp. 1005-1030 (2010).
[87] Kler, P. A., Berli, C. L. A., and Guarnieri, F. A., “Modeling and High Performance Simulation of Electrophoretic Techniques in Microfluidic Chips,” Microfluidics and Nanofluidics, Vol. 10, No. 1, pp. 187-198 (2011).
[88] Lee, D. H., Farouk, B., and Noh, H. M., “3-D Simulations of Electroosmotic Sample Migration in Microchannels: Effects of Surface and Solution Property Variations,” Separation Science and Technology, Vol. 46, No. 9, pp. 1377-1387 (2011).
[89] Kim, K., Kwak, H. S., and Song, T. H., “A Numerical Model for Simulating Electroosmotic Micro- and Nanochannel Flows under Non-Boltzmann Equilibrium,” Fluid Dynamics Research, Vol. 43, No. 4, 041401(13pp.) (2011).
[90] Bera, S. and Bhattacharyya, S., “On Mixed Electroosmotic-Pressure Driven Flow and Mass Transport in Microchannels,” International Journal of Engineering Science, Vol. 62, pp.165-176 (2013).
[91] Charhrouchni, I., Pallandre, A., Le Potier, I., Deslouis, C., and Haghiri-Gosnet, A. M., “Computational Study of Velocity Profile Obtained in Microfluidic Channel Bearing a Fluidic Transistor: Toward Highly Resolved Electrophoretic Separation,” Electrophoresis, Vol. 34, No. 5, pp. 725-735 (2013).
[92] Birdsall, C. K. and Langdon, A. B., “Plasma Physics via Computer Simulation,” Taylor & Francis, New York (2005)
[93] Hockney, R. W. and Eastwood, J. W., “Computer Simulation Using Particles,” Institute of Physics Publishing, Bristol (1988).
[94] Birdsall, C. K., “Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions with Neutral Atoms, PIC-MCC,” IEEE Transactions on Plasma Science, Vol. 19, No. 2, pp. 65-85 (1991).
[95] Muzikar, J., van de Goor, T., Gaš, B., and Kenndler, E., “Electrophoretic Mobilities of Large Organic Ions in Nonaqueous Solvents: Determination by Capillary Electrophoresis in Propylene Carbonate, N,N-dimethylformamide, N,N,-dimethylacetamide, Acetonitrile and Methanol,” Electrophoresis, Vol. 23, No. 3, pp. 375-382 (2002).
[96] Porras, S. P., Riekkola, M. L., and Kenndler, E., “The Principles of Migration and Dispersion in Capillary Zone Electrophoresis in Nonaqueous Solvents,” Electrophoresis, Vol. 24, No. 10, pp. 1485-1498 (2003).