簡易檢索 / 詳目顯示

研究生: 劉怡盈
Liu, Yi-Ying
論文名稱: Mob2蛋白質調控星狀膠質細胞分化的研究
Regulation of astrocytic stellation by Mps-one binder (Mob2) protein
指導教授: 曾淑芬
Tzeng, Shun-Fen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 59
中文關鍵詞: 星狀膠質細胞分化
外文關鍵詞: astrocytic stellation
相關次數: 點閱:44下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 星狀膠質細胞( astrocytes )是中樞神經系統中主要的膠質細胞,負責中樞神經系統的恆定、神經細胞生成、以及突觸形成等作用。在中樞神經系統發育時期,星狀膠質細胞的形狀會變成擁有複雜觸角(elaborated process)的放射狀形態。而在細胞培養過程中,當星狀膠質細胞受到刺激而進行分化時也可以觀察到星狀細胞的出現。然而,目前對於放射狀形態產生的分子機制尚未明瞭。已有文獻指出,Mps one binder 2 (Mob2)會和nuclear Ser/Thr kinase Dbf2-related protein (NDR1)共同作用來參與調控細胞週期,但Mob2在中樞神經系統中的研究甚少。本研究發現,星狀膠質細胞在沒有血清的培養環境中,由纖維母細胞狀轉變為有多觸角的細胞形態,並且細胞內Mob2的基因表現有顯著的上升。星狀膠質細胞以cAMP類似物-dbcAMP處理6小時後,觀察到Mob2基因表現量增加,並且在24小時的處理下,觀察到星狀膠質細胞轉變為放射狀形態。促胰液素/高血糖素/VIP成員之一PACAP,可以促進神經新生和星狀膠質細胞的分化。我們發現PACAP處理星狀膠質細胞6小時後,可以增加Mob2基因表現,並且此分子處理星狀膠質細胞24小時後,細胞形態轉變為放射狀形態。而進一步的結果發現,利用cAMP/PKA的抑制劑KT5720和CaMKII抑制劑KN93,可以抑制由dbcAMP所增加的Mob2基因表現。KT5720和細胞內鈣離子嵌合物BAPTA-AM,可以抑制由PACAP所增加的Mob2的基因表現。以上結果顯示cAMP/Ca2+ 會刺激星狀膠質細胞中Mob2的基因表現。進一步利用pcDNA-Mob2 (pMob2)及pEGFP-N2(N2)共同轉殖的方法,並將轉殖後的星狀膠質細胞培養在含有血清的培養液中,結果發現帶有GFP+的細胞形態為放射狀的型態。另一方面,利用siRNA-Mob2及N2共同轉殖的方式,在dbcAMP處理下星狀膠質細胞的觸角呈現萎縮的現象。以上的結果推測,Mob2參與調控星狀膠質細胞放射狀形態的產生。在轉殖pMob2/N2的細胞中,利用Texas Red-X phalloidin進行F-actin螢光染色,可以發現到會有短的絲狀足(filopodia)分散在延伸的觸角上。然而,利用Q-PCR分析發現,在dbcAMP的處理下並不會影響細胞中actin及GFAP的mRNA表現量。由以上的結果推測,中樞神經系統發育過程中,Mob2或許會在cAMP刺激之下,透過影響actin的重新排列而導致星狀膠質細胞轉變成為放射狀的形態。

    Astrocytes which are a major population of CNS neural cells play an important role in neuronal homeostasis, neurogenesis, and synaptogenesis. During CNS development, astrocytes become stellate cells with elaborated processes. In culture, astrocytic stellation is observed when these cells undergo differentiation in response to stimuli. Nevertheless, the molecular mechanism for astrocytic stellation is poorly understood. Mps one binder (Mob) proteins that form stable complex with a nuclear Ser/Thr kinase Dbf2-related protein (NDR1), has been implicated to regulate cell cycle progression. Yet, little is known about their functional role in CNS neural cells. In this study, we found that Mob2 mRNA upregulation accompanied with astrocytic stellation after serum deprivation. Furthermore, the addition of the membrane permeable cAMP analogue dbcAMP not only caused an increase in Mob2 mRNA expression at 6 h, but also significantly induced astrocytic stellation at 24 h. Similarly, PACAP that is a member of the vasoactive intestinal peptide (VIP) /glucagon peptide family and stimulates neurogenesis and gliogenesis, induced an increase in Mob2 mRNA expression at 6 h, followed by astrocytic stellation at 24 h. The cAMP/PKA inhibitor KT5720 and the CaMKII inhibitor KN93 blocked dbcAMP-induced upregulation of Mob2 mRNA expression in astrocytes. KT5720 and intracellular calcium chelator BAPTA-AM also blocked PACAP-induced Mob2 mRNA upregulation. These results suggest that cAMP/Ca2+ signaling stimulates Mob2 transcription in astrocytes. Molecular approach using cotransfection of pcDNA-Mob2 (pMob2) with pEGFP-N2 (N2) in serum-treated astrocytes indicated that there was an evident stellate morphological change of GFP+ cells. In addition, interference of Mob2 expression using siRNA-Mob2 induced process withdrawal in dbcAMP-treated astrocytes. These results point to the role of Mob2 in the regulation of astrocytic stellation. In F-actin staining using Texas Red-X phalloidin, the short filopodia scattered in the elongated process of GFP+ astrocytes was observed after cotransfection of pMob2 with N2. However, Q-PCR analysis on actin and GFAP mRNA indicated that treatment with dbcAMP had no effect on GFAP and actin production. Based on our findings, we suggest that Mob2 may mediate astrocytic stellation by cAMP-dependent pathway through actin rearrangement in developing CNS.

    誌謝..2 中文摘要..3 英文摘要..4 目錄..7 圖目錄..9 縮寫表..10 前言..11 實驗目的..18 材料與方法..19 一、 材料..19 (一)細胞培養材料..19 (二)化學藥品..19 (三)試劑組..20 (四)抗體..20 二、方法..20 (一)細胞培養..20 (二)核醣核酸(RNA)萃取以及定量RT-PCR..21 (三)免疫螢光染色法..21 (四)細胞轉殖..22 (五)Texas Red-X phalloidin染色.. 22 (六)統計分析..24 結果..25 一、血清對星狀膠質細胞形態以及Mob2 mRNA表現量的影響..25 二、dbcAMP對星狀膠質細胞形態及Mob2 mRNA表現量的影響..25 三、PACAP對星狀膠質細胞形態以及Mob2 mRNA表現量的影響..26 四、Mob2 基因轉殖對星狀膠質細胞形態變化的影響..27 五、Mob2 RNA干擾對於星狀膠質細胞形態變化的影響..27 六、dbcAMP對星狀膠質細胞內actin和GFAP表現量的影響..28 七、dbcAMP和PACAP對星狀膠質細胞骨架結構的影響..28 八、Mob2 基因轉殖對於星狀膠質細胞骨架結構的影響..29 九、dbcAMP調控Mob2基因表現的機制..30 十、PACAP調控Mob2基因表現的機制..30 討論..32 一、dbcAMP對星狀膠質細胞形態及Mob2 mRNA表現量的影響..32 二、Mob2基因轉殖及siRNA-Mob2對於星狀膠質細胞形態變化的影響..33 三、星狀膠質細胞形態改變的訊息傳遞路徑..34 四、Mob2和脊髓損傷之關係..35 五、未來研究方向..36 六、參考文獻..37

    Abd-El-Basset EM, Fedoroff S (1997) Upregulation of F-actin and alpha-actinin in reactive astrocytes. J Neurosci Res 49:608-616.
    Akita Y (2002) Protein kinase C-epsilon (PKC-epsilon): its unique structure and function. J Biochem (Tokyo) 132:847-852.
    Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208-215.
    Baorto DM, Mellado W, Shelanski ML (1992) Astrocyte process growth induction by actin breakdown. J Cell Biol 117:357-367.
    Bichsel SJ, Tamaskovic R, Stegert MR, Hemmings BA (2004) Mechanism of activation of NDR (nuclear Dbf2-related) protein kinase by the hMOB1 protein. J Biol Chem 279:35228-35235.
    Black JA, Sontheimer H, Waxman SG (1993) Spinal cord astrocytes in vitro: phenotypic diversity and sodium channel immunoreactivity. Glia 7:272-285.
    Burgos M, Calvo S, Molina F, Vaquero CF, Samarel A, Llopis J, Tranque P (2007) PKCepsilon induces astrocyte stellation by modulating multiple cytoskeletal proteins and interacting with Rho A signalling pathways: implications for neuroinflammation. Eur J Neurosci 25:1069-1078.
    Daniel PB, Walker WH, Habener JF (1998) Cyclic AMP signaling and gene regulation. Annu Rev Nutr 18:353-383.
    Dejda A, Gendek-Kubiak H, Nowak JZ (2004) Effect of different forms of vasoactive intestinal peptide on cAMP formation in the mammalian cerebral cortex. Pol J Pharmacol 56:421-425.
    Devroe E, Erdjument-Bromage H, Tempst P, Silver PA (2004) Human Mob proteins regulate the NDR1 and NDR2 serine-threonine kinases. J Biol Chem 279:24444-24451.
    Dodge-Kafka KL, Kapiloff MS (2006) The mAKAP signaling complex: integration of cAMP, calcium, and MAP kinase signaling pathways. Eur J Cell Biol 85:593-602.
    Fedoroff S, McAuley WA, Houle JD, Devon RM (1984) Astrocyte cell lineage. V. Similarity of astrocytes that form in the presence of dBcAMP in cultures to reactive astrocytes in vivo. J Neurosci Res 12:14-27.
    Fenteany G, Zhu S (2003) Small-molecule inhibitors of actin dynamics and cell motility. Curr Top Med Chem 3:593-616.
    Frizzo JK, Tramontina AC, Tramontina F, Gottfried C, Leal RB, Donato R, Goncalves CA (2004) Involvement of the S100B in cAMP-induced cytoskeleton remodeling in astrocytes: a study using TRTK-12 in digitonin-permeabilized cells. Cell Mol Neurobiol 24:833-840.
    Fukuchi M, Tabuchi A, Tsuda M (2005) Transcriptional regulation of neuronal genes and its effect on neural functions: cumulative mRNA expression of PACAP and BDNF genes controlled by calcium and cAMP signals in neurons. J Pharmacol Sci 98:212-218.
    Goldman JE, Abramson B (1990) Cyclic AMP-induced shape changes of astrocytes are accompanied by rapid depolymerization of actin. Brain Res 528:189-196.
    Golovina VA, Blaustein MP (2000) Unloading and refilling of two classes of spatially resolved endoplasmic reticulum Ca(2+) stores in astrocytes. Glia 31:15-28.
    Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H (1997) Pituitary adenylate cyclase-activating polypeptide promotes cell survival and neurite outgrowth in rat cerebellar neuroblasts. Neuroscience 78:419-430.
    Hatten ME (1985) Neuronal regulation of astroglial morphology and proliferation in vitro. J Cell Biol 100:384-396.
    Hatten ME, Liem RK, Shelanski ML, Mason CA (1991) Astroglia in CNS injury. Glia 4:233-243.
    He Y, Emoto K, Fang X, Ren N, Tian X, Jan YN, Adler PN (2005) Drosophila Mob family proteins interact with the related tricornered (Trc) and warts (Wts) kinases. Mol Biol Cell 16:4139-4152.
    Hergovich A, Bichsel SJ, Hemmings BA (2005) Human NDR kinases are rapidly activated by MOB proteins through recruitment to the plasma membrane and phosphorylation. Mol Cell Biol 25:8259-8272.
    Hergovich A, Stegert MR, Schmitz D, Hemmings BA (2006) NDR kinases regulate essential cell processes from yeast to humans. Nat Rev Mol Cell Biol 7:253-264.
    Lai ZC, Wei X, Shimizu T, Ramos E, Rohrbaugh M, Nikolaidis N, Ho LL, Li Y (2005) Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120:675-685.
    Lioudyno M, Skoglosa Y, Takei N, Lindholm D (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) protects dorsal root ganglion neurons from death and induces calcitonin gene-related peptide (CGRP) immunoreactivity in vitro. J Neurosci Res 51:243-256.
    Lu N, DiCicco-Bloom E (1997) Pituitary adenylate cyclase-activating polypeptide is an autocrine inhibitor of mitosis in cultured cortical precursor cells. Proc Natl Acad Sci U S A 94:3357-3362.
    Luca FC, Winey M (1998) MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol Biol Cell 9:29-46.
    Lux HD, Heinemann U, Dietzel I (1986) Ionic changes and alterations in the size of the extracellular space during epileptic activity. Adv Neurol 44:619-639.
    McGinnis KM, Wang KK, Gnegy ME (2001) Calcium/calmodulin-dependent protein kinase inhibition potentiates thapsigargin-mediated cell death in SH-SY5Y human neuroblastoma cells. Neurosci Lett 301:99-102.
    McMillian MK, Thai L, Hong JS, O'Callaghan JP, Pennypacker KR (1994) Brain injury in a dish: a model for reactive gliosis. Trends Neurosci 17:138-142.
    Milenkovic I, Nedeljkovic N, Filipovic R, Pekovic S, Culic M, Rakic L, Stojiljkovic M (2005) Pattern of glial fibrillary acidic protein expression following kainate-induced cerebellar lesion in rats. Neurochem Res 30:207-213.
    Moonen G, Cam Y, Sensenbrenner M, Mandel P (1975) Variability of the effects of serum-free medium, dibutyryl-cyclic AMP or theophylline on the morphology of cultured new-born rat astroblasts. Cell Tissue Res 163:365-372.
    Nowak JZ, Kuba K (2002) Pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-stimulated cyclic AMP synthesis in rat cerebral cortical slices: interaction with noradrenaline, adrenaline, and forskolin. J Mol Neurosci 18:47-52.
    Nowak JZ, Kuba K, Zawilska JB (2000a) Effects of neuropeptides of the secretin/VIP/PACAP family on cyclic AMP formation in the chick hypothalamus and cerebral cortex. Pol J Pharmacol 52:467-471.
    Nowak JZ, Kuba K, Zawilska JB (2000b) Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on cyclic AMP formation in the duck and goose brain. Acta Neurobiol Exp (Wars) 60:209-214.
    Nowak JZ, Jozwiak-Bebenista M, Bednarek K (2007) Effects of PACAP and VIP on cyclic AMP formation in rat neuronal and astrocyte cultures under normoxic and hypoxic condition. Peptides.
    Nowak JZ, Pigulowska A, Kuba K, Zawilska JB (2002) Stimulatory effects of pituitary adenylate cyclase-activating polypeptide on inositol phosphates accumulation in avian cerebral cortex and hypothalamus. Neurosci Lett 323:179-182.
    Paul S, Das S, Poddar R, Sarkar PK (1996) Role of thyroid hormone in the morphological differentiation and maturation of astrocytes: temporal correlation with synthesis and organization of actin. Eur J Neurosci 8:2361-2370.
    Perez V, Bouschet T, Fernandez C, Bockaert J, Journot L (2005) Dynamic reorganization of the astrocyte actin cytoskeleton elicited by cAMP and PACAP: a role for phosphatidylInositol 3-kinase inhibition. Eur J Neurosci 21:26-32.
    Ramsell KD, Zhao BG, Baker D, Cobbett P (1996) Serum modulates cyclic AMP-dependent morphological changes in cultured neurohypophysial astrocytes. Brain Res Bull 39:109-114.
    Reglodi D, Somogyvari-Vigh A, Vigh S, Kozicz T, Arimura A (2000) Delayed systemic administration of PACAP38 is neuroprotective in transient middle cerebral artery occlusion in the rat. Stroke 31:1411-1417.
    Reichenbach A, Siegel A, Senitz D, Smith TG, Jr. (1992) A comparative fractal analysis of various mammalian astroglial cell types. Neuroimage 1:69-77.
    Ridet JL, Malhotra SK, Privat A, Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570-577.
    Safavi-Abbasi S, Wolff JR, Missler M (2001) Rapid morphological changes in astrocytes are accompanied by redistribution but not by quantitative changes of cytoskeletal proteins. Glia 36:102-115.
    Scemes E, Suadicani SO, Spray DC (2000) Intercellular communication in spinal cord astrocytes: fine tuning between gap junctions and P2 nucleotide receptors in calcium wave propagation. J Neurosci 20:1435-1445.
    Seifert G, Schilling K, Steinhauser C (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci 7:194-206.
    Sheppard CA, Simpson PB, Sharp AH, Nucifora FC, Ross CA, Lange GD, Russell JT (1997) Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ release sites that support Ca2+ waves in cultured astrocytes. J Neurochem 68:2317-2327.
    Simpson CS, Morris BJ (1995) Induction of c-fos and zif/268 gene expression in rat striatal neurons, following stimulation of D1-like dopamine receptors, involves protein kinase A and protein kinase C. Neuroscience 68:97-106.
    Suh J, Lu N, Nicot A, Tatsuno I, DiCicco-Bloom E (2001) PACAP is an anti-mitogenic signal in developing cerebral cortex. Nat Neurosci 4:123-124.
    Toran-Allerand CD, Bentham W, Miranda RC, Anderson JP (1991) Insulin influences astroglial morphology and glial fibrillary acidic protein (GFAP) expression in organotypic cultures. Brain Res 558:296-304.
    Tzeng SF, Lee JL, Kuo JS, Yang CS, Murugan P, Ai Tai L, Chu Hwang K (2002) Effects of malonate C60 derivatives on activated microglia. Brain Res 940:61-68.
    Uchida D, Arimura A, Somogyvari-Vigh A, Shioda S, Banks WA (1996) Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Res 736:280-286.
    Vallejo I, Vallejo M (2002) Pituitary adenylate cyclase-activating polypeptide induces astrocyte differentiation of precursor cells from developing cerebral cortex. Mol Cell Neurosci 21:671-683.
    Villalba M, Bockaert J, Journot L (1997) Pituitary adenylate cyclase-activating polypeptide (PACAP-38) protects cerebellar granule neurons from apoptosis by activating the mitogen-activated protein kinase (MAP kinase) pathway. J Neurosci 17:83-90.
    Waltereit R, Weller M (2003) Signaling from cAMP/PKA to MAPK and synaptic plasticity. Mol Neurobiol 27:99-106.
    Weiss EL, Kurischko C, Zhang C, Shokat K, Drubin DG, Luca FC (2002) The Saccharomyces cerevisiae Mob2p-Cbk1p kinase complex promotes polarized growth and acts with the mitotic exit network to facilitate daughter cell-specific localization of Ace2p transcription factor. J Cell Biol 158:885-900.
    Won CL, Oh YS (2000) cAMP-induced stellation in primary astrocyte cultures with regional heterogeneity. Brain Res 887:250-258.
    Zallen JA, Peckol EL, Tobin DM, Bargmann CI (2000) Neuronal cell shape and neurite initiation are regulated by the Ndr kinase SAX-1, a member of the Orb6/COT-1/warts serine/threonine kinase family. Mol Biol Cell 11:3177-3190.

    下載圖示 校內:2012-07-12公開
    校外:2012-07-12公開
    QR CODE