簡易檢索 / 詳目顯示

研究生: 方柊凱
Fang, Chung-kai
論文名稱: 添加TiO2對Na-Ca-Al-Si系統之燃煤底灰 轉化微晶玻璃其熱處理程序之影響
Thermal Processing of Glass Ceramics Transformed from Coal Bottom Ash in the Na-Ca-Al-Si Series with TiO2 Additive
指導教授: 黃紀嚴
Huang, Chi-Yen
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 71
中文關鍵詞: 微晶玻璃燃煤底灰
外文關鍵詞: coal bottom ash, glass ceramic
相關次數: 點閱:66下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣之燃煤電廠持續以每年接近200萬噸之量產生灰渣,其中燃煤底灰約佔20%,而目前台灣大多數之研究以飛灰為主,使得飛灰的利用率已接近90%,相較之下,底灰的利用率卻相當低,且多數被堆置於灰塘之中,除了會造成生態環境被破壞之外,堆置空間日漸減少也是另一項重大衝擊。
    燃煤底灰內含豐富的SiO2、Al2O3及Fe2O3等成份,正是製造玻璃的主要原料,且含有TiO2,是促進形成玻璃陶瓷的成核劑,原始底灰玻璃之熔點及黏滯度均高,需調整成份。故本研究以燃煤底灰添加10wt%之碳酸鈉、15wt%之碳酸鈣及5wt%之二氧化鈦熔製玻璃,再經適當之熱處理程序後,獲得微晶玻璃。將所得之底灰玻璃利用DTA分析並觀察其吸放熱行為,且獲得熱處理的重要溫度點,並以文獻為依據,求得底灰玻璃之預成核最佳熱處理條件。
    底灰玻璃經DTA分析可得知二階段熱處理之最佳成核條件為730℃持溫2小時。而玻璃經一階段及二階段之熱處理後,利用XRD分析可得知兩製程之結晶相均相同,其結晶相種類包括鈣斜長石、霞石、鈣鐵榴石等結晶相。
    利用Kissinger之公式可求得一階段熱處理之結晶活化能為156.078 KJ/mole,二階段熱處理之結晶活化能為216.744 KJ/mole,可知此成份之底灰玻璃粉末較適用於一階段熱處理之製程。於基本物理性質方面,利用阿基米德法可得知經一階段或二階段熱處理之微晶玻璃,其體密度及視比重均較原樣玻璃來的高。
    本實驗較前人研究[1]多添加5wt%之二氧化鈦,底灰玻璃經DTA分析可得知其結晶放熱峰如預期的提前發生,且有第二結晶放熱峰的形成;利用XRD分析可得知,本實驗有霞石及鈣鐵榴石等不同結晶相的生成;於結晶活化能方面,可得知添加二氧化鈦可幫助降低結晶活化能。

    The coal combustion electric power plant generates total coal ash about two hundred million tons annually, and bottom ash is about 20% of all. The chemical composition of bottom ash are mostly SiO2 and Al2O3 which makes the major composition of glass raw materials. Furthermore, TiO2 can serve as nucleating agent to make glass ceramics. The glass from bottom ash then heat-treated to enhance nucleation and crystal growth to obtain crystallization glass. The use of analytical instruments (DTA, XRD) can investigate the crystal behavior of crystallization glass. The mechanics and kinetic energy of crystal growth will be studied too.
    This research add 10wt% Na2CO3, 15wt% CaCO3 and 5wt% TiO2 into bottom ash, and use Na+ and Ca2+ to reduce viscosity of the melt as well as fusion point of bottom ash to enhance the phase separation of glass and promote crystallization ability of glass, and then transforming to crystallization glass by single or two step heat-treatment. It’s crystal phases are anorthite, nepheline and andradite. The temperature of maximum nucleation rate is 730oC and the most appropriate nucleation time is 2 hours. The activity energy of single heat-treatment was 156.078 KJ/mole, and of two heat-treatment was 216.744 KJ/mole. It shows the processing of single heat-treatment is more suitable for the powder of the glass ceramics.
    According to DTA analysis will know that this research add 5wt% TiO2 more than previous research will help the first crystalline phase growth early, help a second crystalline phase growth and help to reduce activity energy.

    總目錄 摘要 I 總目錄 V 表目錄 IX 圖目錄 X 第1章 緒論 1 1-1 前言 1 1-2 研究目的 2 1-3 前人研究 3 第2章 理論基礎 6 2-1 燃煤底灰之基本性質及利用 6 2-1-1 燃煤底灰之基本性質 6 2-1-2 燃煤底灰之利用概況 7 2-2 玻璃形成之概念 8 2-2-1玻璃形成理論 9 2-2-2玻璃之構成要素 9 2-3 玻璃之製造 12 2-3-1微晶玻璃 12 2-3-2 微晶玻璃之製造 13 2-4 結晶化過程 14 2-4-1 相分離 14 2-4-2 微晶玻璃之成長機制 18 2-4-2-1 成核機制 18 2-4-2-2 結晶成長機制 19 2-4-3 結晶熱處理 20 第三章 實驗方法與步驟 23 3-1 實驗材料製備 23 3-2 實驗流程 23 3-3 熱處理程序 26 3-3-1 最大成核速率之溫度 26 3-3-2 最適成核時間 27 3-3-3 結晶活化能 27 3-4 性質量測與分析 29 3-4-1 精底灰成份分析 29 3-4-2 熱差分析(DTA) 30 3-4-3 X-Ray繞射分析(XRD) 30 3-4-4 顯微結構分析(SEM) 30 3-4-5 基本物理性質量測 31 第4章 結果與討論 32 4-1 精底灰化學成份分析 32 4-2 熱差分析 35 4-3 最佳成核熱處理條件 37 4-3-1 最大成核速率之溫度 37 4-3-2 最適成核時間 40 4-4 結晶相分析 43 4-4-1 底灰玻璃 44 4-4-2 一階段熱處理 45 4-4-3 二階段熱處理 47 4-4-4 與前人研究之結晶相比較 49 4-5 結晶活化能計算 50 4-5-1 一階段熱處理之結晶活化能 50 4-5-2 二階段熱處理之結晶活化能 52 4-5-3 與前人研究之結晶活化能比較 54 4-6 顯微結構分析 55 4-6-1 一階段熱處理 55 4-6-2 二階段熱處理 56 4-7 基本物性量測分析 66 第5章 結論與建議 67 5-1 結論 67 5-2 建議 69 參考文獻 70 表目錄 表1.1 興達電廠煤灰年產量及利用率 2 表2.1 玻璃形成物之化學鍵 8 表2.2 旋節分解相分離和成核成長相分離之比較 17 表4.1 底灰與添加後底灰之化學成分表 33 表4.2 成核溫度與結晶放熱峰位置 39 表4.3 成核時間與結晶放熱峰位置 41 表4.4 一階段及二階段之熱處理條件 43 表4.5 一階段及二階段熱處理之結晶相 47 表4.6 本實驗與前人研究之結晶相比較 49 表4.7 一階段熱處理之升溫速率與結晶放熱峰關係表 50 表4.8 二階段熱處理之升溫速率與結晶放熱峰關係表 52 表4.9 物理性質分析 66 圖目錄 圖2.1 XRD圖,精底灰 7 圖2.2 玻璃網狀結構 11 圖2.3 鈉鈣離子進入玻璃結構之示意圖 12 圖2.4 典型微晶玻璃製造流程圖14 圖2.5 玻璃分相微結構示意圖 16 圖2.6 控制結晶熱處理之不同程序 21 圖2.7 DTA圖,玻璃升溫曲線22 圖3.1 實驗流程圖 25 圖4.1 DTA圖,精底灰升溫曲線 34 圖4.2 DTA圖,底灰玻璃升溫曲線 36 圖4.3 DTA圖,前人研究之底灰玻璃升溫曲線 36 圖4.4 XRD圖,預成核熱處理 38 圖4.5 DTA圖,預成核溫度與結晶放熱峰之關係 39 圖4.6 最大成核速率之溫度圖 40 圖4.7 DTA圖,預成核時間與結晶放熱峰之關係 41 圖4.8 最適成核時間 42 圖4.9 XRD圖,底灰玻璃 44 圖4.10 XRD圖,一階段熱處理 46 圖4.11 XRD圖,二階段熱處理 48 圖4.12 DTA圖,升溫速率對一階段熱處理之放熱峰影響 51 圖4.13 一階段熱處理之結晶活化能 51 圖4.14 DTA圖,升溫速率對二階段熱處理之放熱峰影響 53 圖4.15 二階段熱處理之結晶活化能 53 圖4.16 前人研究之一階段結晶活化能 54 圖4.17 EDS圖譜,一階段熱處理1050℃之水滴狀結晶 57 圖4.18 SEM圖,一階段熱處理850℃ 58 圖4.19 SEM圖,一階段熱處理950℃ 59 圖4.20 SEM圖,一階段熱處理1050℃ 60 圖4.21 SEM圖,一階段熱處理1150℃ 61 圖4.22 SEM圖,二階段熱處理850℃ 62 圖4.23 SEM圖,二階段熱處理950℃ 63 圖4.24 SEM圖,二階段熱處理1050℃ 64 圖4.25 SEM圖,二階段熱處理1150℃ 65

    1. 林雨謙,「燃煤底灰添加碳酸鈉-碳酸鈣轉化微晶玻璃之非等溫法結晶動力學研究」,國立成功大學資源工程研究所,碩士論文,2008.7.。
    2. 韓雄文,盧志昌,黃紀嚴,「利用燃煤電廠底灰製造玻璃陶瓷之研究」(NSC 90-2626-E-239-002)。
    3. R. Cioffi, P. Pernice, A. Aronne, A. Marotta, “Nucleation and crystal growth in a fly ash derived glass,” J. Master.Sci. 28 (1993) 6591-6594.
    4. R. Cioffi, P. Pernice, A. Aronne, M. Catauro, “Glass-Ceramics from fly ash with added Li2O,” J. of the European Ceramic Society, 13 (1994) 143-148.
    5. R. Cioffi, P. Pernice, A. Aronne, M. Catauro, G. Quattroni, “Glass-Ceramics from fly ash with added MgO and TiO2,” J. of the European Ceramic Society, 14 (1994) 517-521.
    6. Ma Mingsheng, Ni Wen, Wang Yali, Wang Zhongjie, Liu Fengmei, “The effect of TiO2 on phase separation and crystallization of glass-ceramics in CaO-MgO-Al2O3-SiO2-Na2O system,” J. of Non-Crystalline Solids 354 (2008) 5395-5401.
    7. C. Leory, M. C.Ferro, R.C.C. Monteiro, I. Queralt, J. Ma, M. Romero, “Design, obtainment and properties of glasses and glass-ceramics from coal fly ash,” Fuel 78 (1999) 271-276.
    8. 葉仁君,「燃煤底灰添加碳酸鋰轉化結晶玻璃其熱處理程序之研究」,國立成功大學資源工程研究所,碩士論文,2004.7.。
    9. 王金鐘,李德河,「火力電廠底灰在高流動性改良土工程上的應用」,第五屆鋪面材料再生學術研討會論文集,91年10月。
    10. C.N. Musselman, “New Hampshire bottom ash paving demonstration US Route 3, Laconia, New Hampshire,” Proceeding of National Waste Proceeding Conference (1994) 83-90.
    11. M.A. Woodard, “Coal Bottom ash and pine woodpeelings as root substrates in a circulating nutriculture system,” Hortscience 28:6 (1993) 636-638.
    12. 謝世豪,「玻璃之結構與特性」,陶瓷技術手冊,第二十六章。
    13. B.E. Warren, “Kristallogy. Mineralog. Petrogr.,” 86,349 (1993).
    14. 吳振名,「玻璃陶瓷」,陶瓷技術手冊,第二十八章。
    15. 張智強、丁原傑,「簡釋玻璃分相與應用」,國立聯合大學玻璃及光纖材料研究中心。
    16. W.D. Kingery. Brown Uwmann, “Introduction to Ceramics” 2nd Edition P.329, John Wiley & Sons (SEA) Press, SIN gapore, 1991.
    17. Z. Strnad, “Glass-Ceramics materials”, 1986, Elsevier Science Publishing Company, Inc.
    18. C.T. Kniess, C.D.G de Borba, E. Neves, N.C. Kuhnen, H.G. Riella, “Obtaining and Characterizing Li2O-Al2O3-SiO2 Glass-Ceramics Using Coal Bottom Ash as Raw Material,” Interceram Vol.51, No.2, 2002.
    19. A. Marotta, A. Buri, F. Branda, “Nucleation in glass and differential thermal analysis,” J. Mater. Sci., 16 (1981) 341-344.
    20. H.C. Park, S.H. Lee, B.K. Ryu, “Nucleation and crystallization kinetics of CaO-Al2O3-2SiO2 in powdered anorthite glass,” J. Mater. Sci., 31 (1996) 4249-4253.
    21. M. Guedes, A.C. Ferro, J.M.F. Ferreira, “Nucleation and crystal growth in commercial LAS compositions,” J. of the European Ceramic Society, 21 (2001) 1187-1194.
    22. A. Marotta, A. Buri, “Kinetics of devitrification and differential thermal analysis,” Thermochim. Acta, 25(1978) 155-160.
    23. J. Colmenero, Jilarraz, Thermochim. Acta 35 (1980) 381.
    24. A. Marotta, F. Branda, A. Buri, “Surface and bulk crystallization in non-isothermal devitrification of glass,” thermochim. Acta, 40 (1980) 397-403.
    25. David W. Richerson, “Modern ceramic engineering, properties, processing, and use in desigh,” Marcel Dekker, 1982.

    下載圖示 校內:立即公開
    校外:2009-07-14公開
    QR CODE