簡易檢索 / 詳目顯示

研究生: 何子岳
He, Tzu-Yue
論文名稱: 基於深度學習之文章摘要提取技術研發:以階層式文章摘要能力培養之應用為例
Development of Deep-learning-based Technology for Article Abstract Extraction:Application of Layered Article Abstraction Ability Developing as an Example
指導教授: 陳裕民
Chen, Yuh-Min
共同指導教授: 朱慧娟
Chu, Hui-Chuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 人工智慧機器學習深度學習階層式文章摘要數位閱讀
外文關鍵詞: Artificial intelligence, Machine learning, Deep learning, Layered Article Abstraction, Digital Reading
相關次數: 點閱:114下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著數位時代來臨,數位閱讀素養已成為21世紀人類重要的能力之一。許多研究證實,從大量資料中提取重點並加以統整的能力是數位閱讀素養的關鍵,文章摘要提取能力的培養也因此受到相當的重視。
    我國教育部認為摘要歷程學習方法是比較適合國小生的方法,比起傳統的摘要教學,將摘要歷程式之階層式文章摘要提取方法應用到教學上,能更有效的提升國小學生的文章摘要提取能力。針對階層式文章摘要提取能力培養之數位學習,教師必須事先準備階層式文章摘要參考內容,除了要花費大量時間且無法因應非預設文章之學習需求外,也很難提供即時評量與輔導。
    本研究運用深度學習相關技術,將BERT預訓練模型進行Fine-Tune,再結合本研究設計之演算法,設計並開發「基於深度學習之階層式文章摘要提取技術」,包含「階層式文章摘要分類」、「相似句子分群」、「句子重要度辨識」與「階層式文章摘要提取」等四個步驟。實驗顯示,此技術雖然較不穩定,但有能力產生合乎品質需求之階層式文章摘要。
    本研究也設計一個能提升「數位化文章摘要提取能力」之「數位閱讀能力培養模式」,並依此模式開發具自動化文章摘要提取技術之「數位閱讀寫作平台」,以驗證本技術於「文章摘要提取能力培養」與「數位閱讀能力培養」之應用性與有效性。實驗證實,自動化文章摘要提取技術可以實現學習平台即時評量與即時輔導之功能,且「數位閱讀能力培養模式」能提升學生文章摘要提取能力和閱讀理解能力。

    Due to the advent of the digital age, digital reading literacy is gradually gaining attention. More and more international assessments related to digital reading literacy have been launched. Digital reading literacy has become one of the indispensable skills in the 21st century. As a result, the demand for digital learning has increased dramatically.
    In view of the demand for hierarchical article summaries. In this study, the BERT pre-training model is fine-tuned, and the algorithm designed in this study is combined to develop a "deep learning-based method for extracting layered article abstraction". This method can help teachers to generate digital teaching materials and reduce the burden of digital teaching materials production. The method consists of four sub-steps: "layered article abstraction classification", "similar sentence grouping", "sentence importance identification", and "layered article abstraction extraction".
    In order to evaluate the correctness of the "deep learning-based layered article abstraction extraction method". In this study, we also designed a method evaluation process and conducted experiments for each of the four sub-steps. The results show that this technique is capable of generating layered article abstraction of sufficient quality, although it is not yet stable. It is also proved that the research direction of this method is correct and effective.

    摘要 I 致謝 VI 目錄 VII 表目錄 XI 圖目錄 XIV 第1章 緒論 1 1.1 研究背景 1 1.2 研究目的 2 1.3 研究項目與研究方法 3 1.4 研究步驟 4 第2章 文獻探討 6 2.1 研究領域探討 6 2.1.1文章摘要 6 2.1.2 數位化的閱讀與學習 7 2.1.3 多元閱讀策略 8 2.1.4 心智圖學習策略 9 2.2 相關技術探討 10 2.2.1 自然語言處理 10 2.2.2 詞嵌入(Word Embedding) 10 2.2.3 深度學習與類神經網路 11 2.2.4 Transformer模型 11 2.2.5 BERT預訓練模型 13 2.3 相似研究探討 14 2.3.1 自動化摘要技術 14 2.4 技術評量模式探討 15 2.4.1 N-gram 15 2.4.2 BLEU 15 2.4.3 ROUGE 16 第3章 方法與技術設計 17 3.1 基於深度學習之階層式文章摘要提取方法 17 3.2 階層式文章摘要分類 19 3.2.1 階層式文章摘要分類 19 3.2.2 階層式文章摘要分類方法 20 3.2.3 階層式文章摘要分類模型 21 3.3 相似句子分群 23 3.4 句子重要度辨識 27 3.4.1 句子重要度分類 27 3.4.2 句子重要度方法 27 3.4.3 句子重要度模型 29 3.5 階層式文章摘要提取方法 31 3.5.1 階層式文章摘要初步提取 31 3.5.2 句子層次轉移 32 第4章 技術實作與驗證 37 4.1 方法與技術實驗流程 37 4.2 相關評估指標 38 4.2.1輪廓係數 38 4.2.2深度學習模型評估方法 38 4.2.3人工評分指標 42 4.3 實驗環境 43 4.4 資料集 43 4.4.1 階層式文章摘要分類資料集 43 4.4.2 句子重要度分類資料集 44 4.5 實驗結果分析 44 4.5.1 實驗一 44 4.5.2 實驗二 46 4.5.3 實驗三 46 4.5.4 實驗四 47 第5章 應用有效性驗證 50 5.1 數位閱讀能力培養模式 50 5.2 數位讀寫平台建置 52 4.2.1 平台架構 52 5.2.2 伺服器環境 53 5.2.3平台建置 54 5.2.4平台學習流程 55 5.3 實驗設計與分析 65 5.3.1 實驗設計 65 5.3.2研究對象 65 5.3.3 實驗執行 66 5.3.4 結果與分析(前後測) 67 5.3.5 結果與分析(平台) 82 第6章 結論與未來展望 86 6.1 結論 86 6.2 未來展望 87 參考文獻 88

    Singer, Lauren M., and Patricia A. Alexander. (2017). "Reading on paper and digitally: What the past decades of empirical research reveal." Review of educational research 87.6: 1007-1041.
    Hahnel, C., Goldhammer, F., Kröhne, U., & Naumann, J. (2018). The role of reading skills in the evaluation of online information gathered from search engine environments. Computers in Human Behavior, 78, 223-234.
    Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
    Mikolov, T., Karafiát, M., Burget, L., Černocký, J., and Khudanpur, S. (2010). Recurrent Neural Network Based Language Model. In Eleventh Annual Conference of the International Speech Communication Association.
    Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. (2014). "Sequence to sequence learning with neural networks." Advances in neural information processing systems 27.
    Vaswani, Ashish, et al. (2017). "Attention is all you need." Advances in neural information processing systems 30.
    Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
    Mihalcea, R., & Tarau, P. (2004, July). Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing (pp. 404-411).
    Shetty, K., & Kallimani, J. S. (2017, December). Automatic extractive text summarization using K-means clustering. In 2017 International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT) (pp. 1-9). IEEE.
    Liu, Y. (2019). Fine-tune BERT for extractive summarization. arXiv preprintarXiv:1903.10318.
    Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318).
    Chin-Yew Lin. (2004). ROUGE: A Package for Automatic Evaluation of Summaries. In Text Summarization Branches Out, pages 74–81, Barcelona, Spain.Association for Computational Linguistics.
    Baldini Soares, L., FitzGerald, N., Ling, J., & Kwiatkowski, T. (2019). Matching the blanks: Distributional similarity for relation learning. arXiv e-prints, arXiv-1906.
    Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine learning research, 9(11).
    Peter J. Rousseeuw. (1987) Silhouettes: a Graphical Aid to the Interpretation and Validation of Cluster Analysis. Computational and Applied Mathematics.20: 53–65. doi:10.1016/0377-0427(87)90125-7
    Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillside, NJ:Lawrence Erlbaum Associates.
    朱慧娟(2022)。學習功能輕微缺損學生適性化數位合作讀寫學習研究。國家科學及技術委員會專題研究計畫成果報告。
    柯華葳, 張郁雯, 詹益綾,& 丘嘉慧. (2017). PIRLS 2016 臺灣四年級學生閱.讀素養國家報告. 桃園市:國立中央大學.
    普皓群. (2021) 基於深度學習之心智圖自動產生方法與技術研發:以數位閱讀與寫作能力培養之應用為例. 成功大學製造資訊與系統研究所學位論文, 2021.
    李奕璇(2021)。摘要能力量尺之建置及摘要自動化批改系統之建置與效能評估。國立臺灣師範大學教育心理與輔導學系博士論文,台北市。
    郭佩慧 (2006)中文閱讀摘要學習系統的發展與應用 台南大學測驗統計研究所碩士論文
    江庭妤. (2015). 運用摘要策略融入小六閱讀理解教學之行動研究.
    連啟舜, 陳弘輝, & 曾玉村. (2016). 閱讀之摘要歷程探究. 教育心理學報, 48(2), 133-158.
    鐘孟辰. (2016) 文章結構寫大意教學融入國語課對國小六年級學童摘要表現與閱讀理解的影響. 2016.
    林珊如(2010)。數位時代的閱讀:青少年網路閱讀的爭議與未來。圖書資訊學刊,8(2),25。
    郭伯臣. (2020) 校園防疫與中小學數位學習之現況與未來 國土及公共治理季刊 ,8卷4期 (2020 / 12 / 01) , P72 - 79
    黃郁婷. (2016). 臺灣教育評論月刊,2016,5(5),頁105-107
    劉佩雲. (2019). 多元閱讀策略教學對摘要與閱讀理解能力效果之研究. 師資培育與教師專業發展期刊, 12(3), 1-27.
    Journal of Software 軟體學報 (2021,June) Vol.32, No.6.

    無法下載圖示 校內:2026-07-27公開
    校外:2026-07-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE