| 研究生: |
黃一平 Huang, Yi-Ping |
|---|---|
| 論文名稱: |
新型增強式三閘極奈米線氮化鎵功率高電子遷移率電晶體之研究 Investigation of Novel Enhancement-Mode Tri-Gate Nanowire GaN-based Power High Electron Mobility Transistors |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 155 |
| 中文關鍵詞: | 高電子遷移率電晶體 、氮化鋁銦/氮化鎵 、增強式 、三閘極奈米線 、功率元件 、蕭特基三汲極延伸 、崩潰電壓 、低導通電阻 、氮化鋁鎵/氮化鎵 、金屬-絕緣層-半導體高電子遷移率電晶體 、功率切換 、源極接觸突出 、超音波熱裂解沉積 、數字蝕刻 |
| 外文關鍵詞: | High electron mobility transistor (HEMT), InAlN/GaN, enhancement-mode, tri-gate, nanowire, power device, Schottky tri-drain extension, breakdown voltage, low on-resistance, AlGaN/GaN, breakdown, metal–insulator–semiconductor high electron mobility transistor(MISHEMT), power switch, source contact ledge, ultrasonic spray pyrolysis deposition(USPD), digital etching |
| 相關次數: | 點閱:138 下載:19 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,研製了一系列適用於高功率應用的新型增強式三閘極奈米線之氮化鎵金屬-絕緣體-半導體(金絕半)高電子遷移率晶體。這一系列元件分別為新型增強式三閘極奈米線之氮化鋁銦/氮化鎵功率金屬-氧化物-半導體(金氧半)高電子遷移率晶體、具有蕭特基三汲極延伸的增強式三閘極奈米線之氮化鋁銦/氮化鎵金氧半高電子遷移率晶體以及具有基於奈米線的低功函數金屬源極接觸突出的高性能增強式之氮化鋁鎵/氮化鎵金絕半高電子遷移率晶體。
首先,新型增強式三閘奈米線之氮化鋁銦/氮化鎵功率金氧半高電子遷移率晶體在三閘極奈米線結構中採用了奈米線凹槽設計,以解決傳統增強式三閘極奈米線元件對奈米線寬度的過度依賴,這可以明顯的改善由過窄的奈米線寬度造成最大汲極電流和導通電阻被嚴重衰退的問題。一個被整合式的場板設計也包含在這提出的新型三閘極元件中,它可以有效地分散在閘極和汲極之間的電場,增加元件的崩潰電壓。因此,這提出的新型增強式三閘極奈米線元件具有出色的特性,包含臨界電壓為2.3 V、最大汲極電流為705 mA/mm、次臨界擺幅為65 mV/dacade、開關電流比為10^9–10^10、崩潰電壓為800 V以及Baliga性能指數(BFOM)可達到615 MW/cm^2。
接著,第二種被研製的新型氮化鎵高電子遷移率電晶體為具有蕭特基三汲極延伸的增強式三閘極奈米線之氮化鋁銦/氮化鎵金氧半高電子遷移率晶體。蕭特基三汲極延伸作用像汲極連接的場板,可有效地分散歐姆汲極邊緣附近的峰值電場,去抑制歐姆合金尖峰的影響並改善崩潰電壓。與具有傳統歐姆汲極的元件相比,具有蕭特基三汲極延伸的元件崩潰電壓可提升約30%。另一方面,蕭特基三汲極延伸的三汲極結構可以使肖特基金屬直接從奈米線側壁接觸二維電子氣,以降低肖特基延伸部分的導通電壓,並進而改善元件整體的導通電阻。因此,這具有蕭特基三汲極延伸的增強式三閘極奈米線之氮化鋁銦/氮化鎵金氧半高電子遷移率晶體藉由崩潰電壓明顯的改進和保有低的導通電阻下,Baliga性能指數(BFOM)可以提升到1019 MW/cm^2。
最後,第三種被研製的新型氮化鎵高電子遷移率電晶體為具有基於奈米線的低功函數金屬源極接觸突出的高性能增強式之氮化鋁鎵/氮化鎵金絕半高電子遷移率晶體。基於納米線的低功函數金屬源極接觸突出用於降低源極至閘極間的存取電阻,進而改善元件總體的導通電阻,這與直接縮短閘極與歐姆源極之間的距離去以降低存取電阻相比,基於納米線的低功函數金屬源極接觸突出方式可以明顯地提升崩潰電壓。
此外,在這提出的元件中,氧化鋁/氮化矽的雙介電層與三閘極奈米線結構結合,可以改善氮化鎵高電子遷移率電晶體常有的汲極與閘極之間的電場輔助電子俘獲問題,進而改善元件的電流崩塌現象與動態/靜態導通電阻比。這提出的具有基於奈米線的低功函數金屬源極接觸突出的元件具有非常出色的性能表現,包含臨界電壓為1.2 V、開關電流比為10^10、最大汲極電流為825 mA/mm以及次臨界擺幅為76 mV/dacade。這元件同時還具有出色的溫度穩定性、臨界電壓磁滯和動態導通電阻特性。當它的閘極與汲極之間的距離為14 µm時,BFOM可以達到1175 MW/cm^2。從上述的結果中顯示出本論文提出的三種新型氮化鎵高電子遷移率電晶體在功率元件應用中的巨大潛力。
This dissertation demonstrates a series of novel enhancement-mode (E-mode) tri-gate nanowire GaN-based metal-insulator-semiconductor high electron mobility transistors (MISHEMTs) for high power device applications, which include a novel E-mode tri-gate nanowire InAlN/GaN power metal-oxide-semiconductor (MOS) HEMT, an E-mode tri-gate nanowire InAlN/GaN MOSHEMT with Schottky tri-drain extension (STDE), and a high performance E-mode AlGaN/GaN MISHEMT with nanowire-based low work function metal-source contact ledge (LWFM-SCL).
First, the novel E-mode tri-gate nanowire InAlN/GaN power MOSHEMT is investigated. It exploits a nanowire recess design in the tri-gate nanowire structure to solve the over dependence of conventional E-mode tri-gate nanowire GaN-based HEMTs on the nanowire widths (Wnw). This can significantly improve the severe degradation issues of the maximum drain current (ID,max) and on-resistance (Ron) induced by the over narrow Wnw. The proposed novel tri-gate device also includes an integrated field plate (FP) design to effectively distribute the electric field (E-field) between the gate and drain, increasing the device breakdown voltage (VBD). Therefore, the proposed novel E-mode tri-gate device exhibits excellent characteristics, including a positive VTH of 2.3 V, ID,max of 705 mA/mm, subthreshold swing (SS) of 65 mV/decade, on-state current/off-state current (Ion/Ioff) ratio of 10^9–10^10, VBD of 800 V, and Baliga’s figure of merit (BFOM) of 615 MW/cm^2.
Then, the second investigated novel GaN-based HEMT is a E-mode tri-gate nanowire InAlN/GaN MOSHEMT with STDE. The STDE functions as a drain-connected FP to effectively distribute the peak E-field around the ohmic drain edge, which suppresses the effects of the ohmic alloy spikes and improves the VBD. Compared with the device with conventional ohmic drain, the VBD of the device with STDE can be improved about 30%. Moreover, the tri-drain structure of the STDE can reduce the turn-on voltage (Von) of the Schottky extension portion through the Schottky metal directly contacting the2-DEG from the nanowire sidewalls, improving the device overall Ron. Through the novel STDE structure, the BFOM can be improved to 1019 MW/cm^2.
Finally, the third investigated novel GaN-based HEMT is a high performance E-mode AlGaN/GaN MISHEMT with nanowire-based LWFM-SCL. The nanowire-based LWF-SCL is used to lower the gate-to-source access resistance (Ra), reducing the overall Ron. Compared with directly shortening the gate-to-ohmic source distance (LGS) to lower the Ra, the nanowire-based LWFM-SCL design reveals an obviously large VBD owing to the alleviation of the source carrier injection (SCI) from the buffer layer.
Moreover, dual dielectric layers of Al2O3/SiNx combined with the tri-gate recessed nanowire structure in this device are used to suppress the E-field assisted electron trapping between the gate and drain. This can improve the current collapse phenomenon and dynamic Ron degradation issues. The proposed high performance E-mode AlGaN/GaN MISHEMT with nanowire-based LWF-SCL exhibits very excellent performances, including a positive VTH of 1.2 V, high Ion/Ioff ratio of 10^10, large ID,max of 825 mA/mm, and steep SS of 76 mV/decade while also possessing excellent temperature stability, VTH hysteresis, and dynamic Ron characteristics. With LGD of 14 µm, a BFOM of up to 1175 MW/cm^2 can be achieved. These results indicate that the proposed novel E-mode tri-gate nanowire GaN-based MISHEMTs reveal great potential for future power device applications.
[1] C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–nitrides: Growth, characterization, and properties,” J. Appl. Phys., vol. 87, no. 3, pp. 965–1006, Feb. 2000. doi: 10.1063/1.371971.
[2] T. P. Chow and R. Tyagi, “Wide bandgap compound semiconductors for superior high-voltage unipolar power devices,” IEEE Trans. Electron Devices, vol. 41, no. 8, pp. 1481–1483, Aug. 1994. doi: 10.1109/16.297751.
[3] U. K. Mishra, P. Parikh, and Y.-F. Wu, “AlGaN/GaN HEMTs-an overview of device operation and applications,” Proc. IEEE, vol. 90, no. 6, pp. 1022–1031, Jun. 2002. doi: 10.1109/JPROC.2002.1021567.
[4] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222–3233, Mar. 1999, doi: 10.1063/1.369664.
[5] F. Sacconi, A. Di Carlo, P. Lugli and H. Morkoc, “Spontaneous and piezoelectric polarization effects on the output characteristics of AlGaN/GaN heterojunction modulation doped FETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 450–457, March 2001, doi: 10.1109/16.906435.
[6] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” J. Appl. Phys., vol. 87, no. 1, pp. 334–344, 2000, doi: 10.1063/1.371866.
[7] M. Ishida, T. Ueda, T. Tanaka, and D. Ueda, “GaN on Si technologies for power switching devices,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3053–3059, Oct. 2013. doi: 10.1109/TED.2013.2268577.
[8] J. He, M. Hua, Z. Zhang and K. J. Chen, “Performance and VTH Stability in E-Mode GaN Fully Recessed MIS-FETs and Partially Recessed MIS-HEMTs With LPCVD-SiNx/PECVD-SiNx Gate Dielectric Stack, ” IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3185-3191, Aug. 2018, doi: 10.1109/TED.2018.2850042.
[9] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of threshold voltage of AlGaN/GaN HEMTs by fluoride-based plasma treatment: From depletion mode to enhancement mode,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2207–2215, Sep. 2006. doi: 10.1109/TED.2006.881054.
[10] L. Yuan, H. Chen, and K. J. Chen, “Normally off AlGaN/GaN metal–2DEG tunnel-junction field-effect transistors,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 303–305, Mar. 2011. doi: 10.1109/LED.2010.2095823.
[11] G. Greco, F. Iucolano, and F. Roccaforte, “Review of technology for normally-off HEMTs with p-GaN gate,” Mater. Sci. Semicond. Process., vol. 78, pp. 96–106, May 2018. doi: 10.1016/j.mssp.2017.09.027.
[12] Y. Dora, A. Chakraborty, S. Heikman, L. McCarthy, S. Keller, S. P. DenBaars, and U. K. Mishra, “Effect of ohmic contacts on buffer leakage of GaN transistors,” IEEE Electron Device Lett., vol. 27, no. 7, pp. 529–531, Jul. 2006, doi: 10.1109/LED.2006.876306.
[13] M. Hou, G. Xie, and K. Sheng, “Improved device performance in AlGaN/GaN HEMT by forming ohmic contact with laser annealing,” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1137–1140, Aug. 2018, doi: 10.1109/LED.2018.2844951.
[14] B. Lu, E. L. Piner, and T. Palacios, “Schottky-drain technology for AlGaN/GaN high-electron mobility transistors,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 302–304, Apr. 2010, doi: 10.1109/LED.2010.2040704.
[15] B. Lu, O. I. Saadat, and T. Palacios, “High-performance integrated dual-gate AlGaN/GaN enhancement-mode transistor,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 990–992, Sep. 2010. doi: 10.1109/LED.2010.2055825.
[16] H. Wang et al., "823-mA/mm Drain Current Density and 945-MW/cm2 Baliga’s Figure-of-Merit Enhancement-Mode GaN MISFETs With a Novel PEALD-AlN/LPCVD-Si3N4 Dual-Gate Dielectric," IEEE Electron Device Lett., vol. 39, no. 12, pp. 1888-1891, Dec. 2018, doi: 10.1109/LED.2018.2879543.
[17] K.-W. Kim, S.-D. Jung, D.-S. Kim, H.-S. Kang, K.-S. Im, J.-J. Oh, J.-B. Ha, J.-K. Shin, and J.-H. Lee, “Effects of TMAH treatment on device performance of normally off Al2O3/GaN MOSFET,” IEEE Electron Device Lett., vol. 32, no. 10, pp. 1376–1378, Oct. 2011. doi: 10.1109/LED.2011.2163293.
[18] B. Li, H. Li, J. Wang and X. Tang, “Asymmetric Bipolar Injection in a Schottky-Metal/ p-GaN/AlGaN/GaN Device Under Forward Bias,” IEEE Electron Device Lett., vol. 40, no. 9, pp. 1389-1392, Sept. 2019, doi: 10.1109/LED.2019.2926503.
[19] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios, and R. Chau, “"High performance fully-depleted tri-gate CMOS transistors,” IEEE Electron Device Lett., vol. 24, no. 4, pp. 263-265, April 2003, doi: 10.1109/LED.2003.810888.
[20] M. Bohr. (2011). Intel’s Revolutionary 22 nm Transistor Technology. Intel. [Online]. Available: https://www-ssl.intel.com/content/www/us/en/silicon-innovations/intel-22nm-technology.html?wapkw=bohr
[21] K. Ohi, J. T. Asubar, K. Nishiguchi, and T. Hashizume, “Current stability in multi-mesa-channel AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 2997–3004, Oct. 2013. doi: 10.1109/TED.2013.2266663.
[22] J. H. Seo, Y.-W. Jo, Y. J. Yoon, D.-H. Son, C.-H. Won, H. S. Jang, I. M. Kang, and J.-H. Lee, “Al(In)N/GaN fin-type HEMT with very low leakage current and enhanced I − V characteristic for switching applications,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 855–858, Jul. 2016. doi: 10.1109/LED.2016.2575040.
[23] J. Ma and E. Matioli, “High performance tri-gate GaN power MOSHEMTs on silicon substrate,” IEEE Electron Device Lett., vol. 38, no. 3, pp. 367–370, Mar. 2017. doi: 10.1109/LED.2017.2661755.
[24] B. Lu, E. Matioli, and T. Palacios, “Tri-gate normally-off GaN power MISFET,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 360–362, Mar. 2012. doi: 10.1109/LED.2011.2179971.
[25] Y.-P. Huang, Y.-S. Lin, H.-Y. Liu, and C.-S. Lee, “Enhancement-mode tri-gate nanowire InAlN/GaN MOSHEMT for power applications,” IEEE Electron Device Lett., vol. 40, no. 6, pp. 929-932, Jun. 2019. doi: 10.1109/LED.2019.2911698.
[26] M. Zhu, J. Ma, L. Nela, C. Erine, and E. Matioli, “High-voltage normally-off recessed tri-gate GaN power MOSFETs with low on-resistance,” IEEE Electron Device Lett., vol. 40, no. 8, pp. 1289–1292, Aug. 2019. doi: 10.1109/LED.2019.2922204.
[27] S. Liu, Y. Cai, G. Gu, J. Wang, C. Zeng, W. Shi, Z. Feng, H. Qin, Z. Cheng, C. Chen, and B. Zhang, “Enhancement-mode operation of nanochannel array (NCA) AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 33, no. 3, pp. 354–356, Mar. 2012. doi: 10.1109/LED.2011.2179003.
[28] K.-S. Im, C. H. Won, Y. W. Jo, J. H. Lee, M. Bawedin, S. Cristoloveanu, and J. H. Lee, “High-performance GaN-based nanochannel FinFETs with/without AlGaN/GaN heterostructure,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3012–3018, Oct. 2013. doi: 10.1109/TED.2013.2274660.
[29] L. Nela, M. Zhu, J. Ma, and E. Matioli, “High-performance nanowire based E-mode power GaN MOSHEMTs with large work-function gate metal,” IEEE Electron Device Lett., vol. 40, no. 3, pp. 439–442, Mar. 2019. doi: 10.1109/LED.2019.2896359.
[30] C.-H. Wu, J.-Y. Chen, P.-C. Han, M.-W. Lee, K.-S. Yang, H.-C. Wang, P.-C. Chang, Q.-H. Luc, YC Lin, C.-F. Dee, A.-A. Hamzah, and E.-Y. hang, “Normally-Off Tri-Gate GaN MIS-HEMTs with 0.76 m·cm2 Specific On-Resistance for Power Device Applications,” IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3441-3446, Aug. 2019. doi: 10.1109/TED.2019.2922301.
[31] B.-Y. Chou, H.-Y. Liu, W.-C. Hsu, C.-S. Lee, Y.-S. Wu, W.-C. Sun, S.-Y. Wei, and S.-M. Yu, “Al2O3-Passivated AlGaN/GaN HEMTs by Using Nonvacuum Ultrasonic Spray Pyrolysis Deposition Technique,” IEEE Electron Device Lett., vol. 35, no. 9, pp. 903–905, Sep. 2014. doi: 10.1109/LED.2014.2333059.
[32] B.-Y. Chou, W.-C. Hsu, H.-Y. Liu, C.-S. Lee, Y.-S. Wu, W.-C. Sun, S.-Y. Wei, S.-M. Yu, and M.-H. Chiang, “Investigations of AlGaN/GaN MOS-HEMT with Al2O3 deposition by ultrasonic spray pyrolysis method,” Semicond. Sci. Technol., vol. 30, no. 1, p. 015009, Jan. 2015. doi: 10.1088/0268-1242/30/1/015009.
[33] H.-Y. Liu, C.-W. Lin, W.-C. Hsu, C.-S. Lee, M.-H. Chiang, W.-C. Sun, S.-Y. Wei, and S.-M. Yu, “Integration of Gate Recessing and In Situ Cl-Doped Al2O3 for Enhancement-Mode AlGaN/GaN MOSHEMTs Fabrication,” IEEE Electron Device Lett., vol. 38, no. 1, pp. 91–94, Jan. 2017. doi: 10.1109/LED.2016.2625304.
[34] Y. He, M. Mi, C. Wang, X. Zheng, M. Zhang, H. Zhang, J. Wu, L. Yang, P. Zhang, X. Ma, and Y. Hao, “Enhancement-mode AlGaN/GaN nanowire channel high electron mobility transistor with fluorine plasma treatment by ICP,” IEEE Electron Device Lett., vol. 8, no. 10, pp. 1421–1424, Oct. 2017. doi: 10.1109/LED.2017.2736780.
[35] J. Kuzmik, “Power electronics on InAlN/(In) GaN: Prospect for a record performance,” IEEE Electron Device Lett., vol. 22, no. 11, pp. 510–513, Nov. 2001. doi: 10.1109/55.962646.
[36] F. Medjdoub, J.-F. Carlin, M. Gonschorek, E. Feltin, M. A. Py, D. Ducatteau, C. Gaquiere, N. Grandjean, and E. Kohn, “Can InAlN/GaN be an alternative to high power/high temperature AlGaN/GaN devices?” in IEDM Tech. Dig., Dec. 2006, pp. 1–4. doi: 10.1109/IEDM.2006.346935.
[37] J. Kuzmik, G. Pozzovivo, C. Ostermaier, G. Strasser, D. Pogany, E. Gornik, J. F. Carlin, M. Gonschorek, E. Feltin, and N. Grandjean, “Analysis of degradation mechanisms in lattice-matched InAlN/GaN high-electron-mobility transistors,” J. Appl. Phys., vol. 106, no. 12, Dec. 2009, Art. no. 124503. doi: 10.1063/1.3272058.
[38] M. Meneghini, G. Meneghesso, and E. Zanoni, Power GaN Devices: Materials, Applications and Reliability. Switzerland: Springer, 2017. [Online]. Available: https://www.springer.com/gp/book/9783319431970
[39] Y.-P. Huang, W.-C. Hsu, H.-Y. Liu, and C.-S. Lee, “Enhancement-mode tri-gate nanowire InAlN/GaN MOSHEMT for power applications,” IEEE Electron Device Lett., vol. 40, no. 6, pp. 929–932, Jun. 2019, doi: 10. 1109/LED.2019.2911698.
[40] M. Sun, Y. Zhang, X. Gao, and T. Palacios, “High-performance GaN vertical fin power transistors on bulk GaN substrates,” IEEE Electron Device Lett., vol. 38, no. 4, pp. 509–512, Apr. 2017, doi: 10.1109/LED.2017.2670925.
[41] R. Wang, P. Saunier, X. Xing, C. Lian, X. Gao, S. Guo, G. Snider, P. Fay, D. Jena, and H. Xing, “Gate-recessed enhancement-mode InAlN/AlN/GaN HEMTs with 1.9-A/mm drain current density and 800-mS/mm transconductance,” IEEE Electron Device Lett., vol. 31, no. 12, pp. 1383–1385, Dec. 2010, doi: 10.1109/LED.2010.2072771.
[42] D. S. Lee, H. Wang, A. Hsu, M. Azize, O. Laboutin, Y. Cao, J. W. Johnson, E. Beam, A. Ketterson, M. L. Schuette, P. Saunier, and T. Palacios, “Nanowire channel InAlN/GaN HEMTs with high linearity of gm and fT,” IEEE Electron Device Lett., vol. 34, no. 8, pp. 969–971, Aug. 2013, doi: 10.1109/LED.2013.2261913.
[43] Y.-L. He, Z.-Y. Huang, M. Zhang, M. Wu, M.-H. Mi, C. Wang, L. Yang, C.-F. Zhang, L.-X. Guo, X.-H. Ma, Y. Hao, “Temperature-Dependent Characteristics of AlGaN/GaN Nanowire Channel High Electron Mobility Transistors,” Phys. Status Solidi A, vol. 216, no. 16, pp. 1900396-1–1900396-6, Aug. 2019, doi: 10.1002/pssa.201900396.
[44] T. Tamura, J. Kotani, S. Kasai, and T. Hashizume, “Nearly temperature independent
saturation drain current in a multi-mesachannel AlGaN/GaN high electron mobility transistor,” Appl. Phys. Express, vol. 1, Feb. 2008, Art. no. 023001. doi: 10.1143/APEX.1.023001.
[45] K.-S. Im, H.-S. Kang, D.-K. Kim, S. Vodapally, Y. Park, J.-H. Lee, Y.-T. Kim, S. Cristoloveanu, and J.-H. Lee, “Temperature-dependent characteristics of AlGaN/GaN FinFETs with sidewall MOS channel,” Solid-State Electron., vol. 120, pp. 47–51, Jun. 2013, doi: 10.1016/j.sse.2016.03.007.
[46] R. Coffie, “Analytical field plate model for field effect transistors,” IEEE Trans. Electron Devices, vol. 61, no. 3, pp. 878–883, Mar. 2014. doi: 10.1109/TED.2014.2300115.
[47] R. Coffie, “Slant field plate model for field-effect transistors,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp. 2867–2872, Aug. 2014. doi: 10.1109/TED.2014.2329475.
[48] B. J. Baliga, “Semiconductors for high-voltage, vertical channel field-effect transistors,” J. Appl. Phys., vol. 53, no. 3, pp. 1759–1764, 1982. doi: 10.1063/1.331646.
[49] Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, “Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 38–40, Jan. 2012, doi: 10.1109/LED.2011.2172972.
[50] H. Saito, Y. Takada, M. Kuraguchi, M. Yumoto, and K. Tsuda, “Over 550 V breakdown voltage of InAlN/GaN HEMT on Si,” Phys. Status Solidi C, vol. 10, no. 5, pp. 824–826, Apr. 2013. doi: 10.1002/pssc.201200608.
[51] A. Watanabe, J. J. Freedsman, R. Oda, T. Ito, and T. Egawa, “Characterization of InAlN/GaN high-electron-mobility transistors grown on Si substrate using graded layer and strain-layer superlattice,” Appl. Phys. Express, vol. 7, Mar. 2014, Art. no. 041002. doi: 10.7567/APEX.7.041002.
[52] R. Chu, A. Corrion, M. Chen, R. Li, D. Wong, D. Zehnder, B. Hughes, and K. Boutros, “1200-V normally off GaN-on-Si field-effect transistors with low dynamic ON-resistance,” IEEE Electron Device Lett., vol. 32, no. 5, pp. 632–634, May 2011. doi: 10.1109/LED.2011.2118190.
[53] I. Hwang, H. Choi, J. Lee, H. S. Choi, J. Kim, J. Ha, C.-H. Um, S.-K. Hwang, J. Oh, J.-Y. Kim, J. K. Shin, Y. Park, U.-I. Chung, I.-K. Yoo, and K. Kim, “1.6 kV, 2.9 m·cm2 normally-off p-GaN HEMT device,” in Proc. 24th Int. Symp. Power Semicond. Devices ICs, Jun. 2012, pp. 41–44. doi: 10.1109/ISPSD.2012.6229018.
[54] J. Wei, S. Liu, B. Li, X. Tang, Y. Lu, C. Liu, M. Hua, Z. Zhang, G. Tang, and K. J. Chen, “Low on-resistance normally-off GaN double channel metal–oxide–semiconductor high-electron-mobility transistor,” IEEE Electron Device Lett., vol. 36, no. 12, pp. 1287–1290, Dec. 2015. doi: 10.1109/LED.2015.2489228.
[55] Z. Tang, Q. Jiang, Y. Lu, S. Huang, S. Yang, X. Tang, and K. J. Chen, “600-V normally off SiNx /AlGaN/GaN MIS-HEMT with large gate swing and low current collapse,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1373–1375, Nov. 2013. doi: 10.1109/LED.2013.2279846.
[56] R. Hao, W. Li, K. Fu, G. Yu, L. Song, J. Yuan, J. Li, X. Deng, X. Zhang, Q. Zhou, and Y. Fan, “Breakdown enhancement and current collapse suppression by high-resistivity GaN cap layer in normally-off AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 38, no. 11, pp. 1567–1570, Nov. 2017. doi: 10.1109/LED.2017.2749678.
[57] K. J. Chen, O. Haberlen, A. Lidow, C. L. Tsai, T. Ueda, Y. Uemoto, and Y. Wu, “GaN-on-Si power technology: Devices and applications,” IEEE Trans. Electron Devices, vol. 64, no. 3, pp. 779–795, Mar. 2017, doi: 10.1109/TED.2017.2657579.
[58] S. L. Selvaraj, T. Suzue, and T. Egawa, “Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers,” IEEE Electron Device Lett., vol. 30, no. 6, pp. 587–589, Jun. 2009, doi: 10.1109/LED.2009.2018288.
[59] W. Saito, T. Noda, M. Kuraguchi, Y. Takada, K. Tsuda, Y. Saito, I. Omura, and M. Yamaguchi, “Effect of buffer layer structure on drain leakage current and current collapse phenomena in high-voltage GaNHEMTs,” IEEE Trans. Electron Devices, vol. 56, no. 7, pp. 1371–1376, Jul. 2009, doi: 10.1109/TED.2009.2021367.
[60] M.-L. Lee, J.-K. Sheu, and C.-C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN,” Appl. Phys. Lett., vol. 91, no. 18, p. 182106, 2007, doi: 10.1063/1.2803067.
[61] Z. Zheng, H. Seo, L. Pang and K. K. Kim, “Nonalloyed ohmic contact of AlGaN/GaN HEMTs by selective area growth of single-crystal n+-GaN using plasma assisted molecular beam epitaxy”, Phys. Status Solidi A, vol. 208, no. 4, pp. 951-954, Apr. 2011, doi: 10.1002/pssa.201026557.
[62] S. P. DenBaars, and U. K. Mishra, “Effect of ohmic contacts on buffer leakage of GaN transistors,” IEEE Electron Device Lett., vol. 27, no. 7, pp. 529–531, Jul. 2006, doi: 10.1109/LED.2006.876306.
[63] M. Hou, G. Xie, and K. Sheng, “Improved device performance in AlGaN/GaN HEMT by forming ohmic contact with laser annealing,” IEEE Electron Device Lett., vol. 39, no. 8, pp. 1137–1140, Aug. 2018, doi: 10.1109/LED.2018.2844951.
[64] B. Lu, E. L. Piner, and T. Palacios, “Schottky-drain technology for AlGaN/GaN high-electron mobility transistors,” IEEE Electron Device Lett., vol. 31, no. 4, pp. 302–304, Apr. 2010, doi: 10.1109/LED.2010.2040704.
[65] Q. Zhou, H. Chen, C. Zhou, Z. H. Feng, S. J. Cai, and K. J. Chen, “Schottky source/drain InAlN/AlN/GaN MISHEMT with enhanced breakdown voltage,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 38–40, Jan. 2012, doi: 10.1109/LED.2011.2172972.
[66] Y.-P. Huang, C.-S. Lee and W.-C. Hsu, "Enhancement-Mode InAlN/GaN Power MOSHEMT on Silicon With Schottky Tri-Drain Extension," IEEE Electron Device Lett., vol. 41, no. 7, pp. 1048-1051, July 2020, doi: 10.1109/LED.2020.3000153.
[67] J. Ma and E. Matioli, “High-voltage and low-leakage AlGaN/GaN trianode Schottky diodes with integrated tri-gate transistors,” IEEE Electron Device Lett., vol. 38, no. 1, pp. 83–86, Jan. 2017, doi: 10.1109/LED.2016.2632044.
[68] J. Ma, M. Zhu, and E. Matioli, “900 V reverse-blocking GaN-on-Si MOSHEMTs with a hybrid tri-anode Schottky drain,” IEEE Electron Device Lett., vol. 38, no. 12, pp. 1704–1707, Dec. 2017, doi: 10.1109/LED.2017.2761911.
[69] E. Matioli, B. Lu, and T. Palacios, “Ultralow leakage current AlGaN/GaN Schottky diodes with 3-D anode structure,” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3365–3370, Oct. 2013, doi: 10.1109/TED.2013.2279120.
[70] Y.-W. Lian, Y.-S. Lin, H.-C. Lu, Y.-C. Huang, and S. S. H. Hsu, “AlGaN/GaN HEMTs on silicon with hybrid Schottky–ohmic drain for high breakdown voltage and low leakage current,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 973–975, Jul. 2012, doi: 10.1109/LED.2012.2197171.
[71] C. Tang, G. Xie, and K. Sheng, “Study of the leakage current suppression for hybrid-Schottky/ohmic drain AlGaN/GaN HEMT,” Microelectron. Rel., vol. 55, no. 2, pp. 347–351, Feb. 2015, doi: 10.1016/j.microrel.2014.10.018.
[72] A. Taube, J. Kaczmarski, R. Kruszka, J. Grochowski, K. Kosiel, K. Gołaszewska-Malec, M. Sochacki, W. Jung, E. Kamiñska, and A. Piotrowska, “Temperature- dependent electrical characterization of high -voltage AlGaN/GaN-on-Si HEMTs with Schottky and ohmic drain
contacts,” Solid-State Electron., vol. 111, pp. 12–17, Sep. 2015, doi: 10.1016/j.sse.2015.04.001.
[73] Y.-W. Lian, Y.-S. Lin, H.-C. Lu, Y.-C. Huang, and S. S. H. Hsu, “Drain E-field manipulation in AlGaN/GaN HEMTs by Schottky extension technology,” IEEE Trans. Electron Devices, vol. 62, no. 2, pp. 519–524, Feb. 2015, doi: 10.1109/TED.2014.2382558.
[74] Q. Zhou, B. Chen, Y. Jin, S. Huang, K. Wei, X. Liu, X. Bao, J. Mou, and B. Zhang, “High-performance enhancement-mode Al2O3/AlGaN/GaNon-Si MISFETs with 626 MW/cm2 figure of merit,” IEEE Trans. Electron Devices, vol. 62, no. 3, pp. 776–781, Mar. 2015. doi: 10.1109/TED.2014.2385062.
[75] K. B. Lee, I. Guiney, S. Jiang, Z. H. Zaidi, H. Qian, D. J. Wallis, M. J. Uren, M. Kuball, C. J. Humphreys, and P. A. Houston, “Enhancement-mode metal–insulator–semiconductor
GaN/AlInN/GaN heterostructure field-effect transistors on Si with a threshold voltage of +3.0 V and blocking voltage above 1000 V,” Appl. Phys. Express, vol. 8, no. 3, Mar. 2015, Art. no. 036502, doi: 10.7567/APEX.8.036502.
[76] Q. Hu, S. Li, T. Li, X. Wang, X. Li, and Y. Wu, “Channel engineering of normally-OFF AlGaN/GaN MOS-HEMTs by atomic layer etching and high-k dielectric,” IEEE Electron Device Lett., vol. 39, no. 9, pp. 1377–1380, Sep. 2018. doi: 10.1109/LED.2018.2856934.
[77] Y. C. Lin, Y. X. Huang, G. N. Huang, C. H. Wu, J. N. Yao, C. M. Chu, S. Chang, C. C. Hsu, J. H. Lee, K. Kakushima, K. Tsutsui, H. Iwai, and E. Y. Chang, “Enhancement-mode GaN MIS-HEMTs with LaHfOx gate insulator for power application,” IEEE Electron Device Lett., vol. 38, no. 8, pp. 1101–1104, Aug. 2017, doi: 10.1109/LED.2017.2722002.
[78] T.-E. Hsieh, E. Y. Chang, Y.-Z. Song, Y.-C. Lin, H.-C. Wang, S.-C. Liu, S. Salahuddin, and C. C. Hu, “Gate recessed quasinormally off Al2O3/AlGaN/GaN MIS-HEMT with low threshold voltage hysteresis using PEALD AlN interfacial passivation layer,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 732–734, Jul. 2014, doi: 10.1109/LED.2014.2321003.
[79] W. Saito, T. Nitta, Y. Kakiuchi, Y. Saito, K. Tsuda, I. Omura, and M. Yamaguchi, “Suppression of Dynamic On-Resistance Increase and Gate Charge Measurements in High Voltage GaN-HEMTs With Optimized Field-Plate Structure,” IEEE Trans. Electron Devices, vol. 54, no. 8, pp. 1825–1830, Aug. 2007, doi: 10.1109/TED.2007.901150.
[80] M. T. Hasan, T. Asano, H. Tokuda, and M. Kuzuhara, “Current collapse suppression by gate field-plate in AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1379–1381, Nov. 2013, doi: 10.1109/LED.2013.2280712.
[81] Y. Yue et al., “InAlN/AlN/GaN HEMTs with regrown ohmic contacts and fT of 370 GHz,” IEEE Electron Device Lett., vol. 33, no. 7, pp. 988–990, Jul. 2012, doi: 10.1109/LED.2012.2196751.
[82] Y.-P. Huang, C.-C. Huang, C.-S. Lee and W.-C. Hsu, "High-Performance Normally-OFF AlGaN/GaN Fin-MISHEMT on Silicon With Low Work Function Metal-Source Contact Ledge," IEEE Trans. Electron Devices, vol. 67, no. 12, pp. 5434-5440, July 2020, doi: 10.1109/TED.2020.3031876.
[83] S. Russo and A. Di Carlo, “Influence of the source–gate distance on the AlGaN/GaN HEMT performance,” IEEE Trans. Electron Devices, vol. 54, no. 5, pp. 1071–1075, May 2007, doi: 10.1109/TED.2007.894614.
[84] Y. Wang, M. J. Wang, B. Xie, C. P. Wen, J. Y. Wang, Y. L. Hao, W. G. Wu, K. J. Chen, and B. Shen, “High-performance normally-off Al2O3/GaN MOSFET using a wet etching-based gate recess technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370–1372, Nov. 2013. doi: 10.1109/LED.2013.2279844.
[85] S. Liu, S. Yang, Z. Tang, Q. Jiang, C. Liu, M. Wang, and K. J. Chen, “Al2O3/AlN/GaN MOS-channel-HEMTs with an AlN interfacial layer,” IEEE Electron Device Lett., vol. 35, no. 7, pp. 723–725, Jul. 2014. doi: 10.1109/LED.2014.2322379.
[86] D. R. Greenberg, J. A. del Alamo, and R. Bhat, “Impact ionization and transport in the InAlAs/n+-InP HFET,” IEEE Trans. Electron Devices, vol. 42, no. 9, pp. 1574–1582, Sep. 1995, doi: 10.1109/16.405270.
[87] D. R. Greenberg and J. A. D. Alamo, “Nonlinear source and drain resistance in recessed-gate heterostructure field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, no. 8, pp. 1304–1306, Aug. 1996, doi: 10.1109/16.506784.
[88] L. Yang, M. Mi, B. Hou, J. Zhu, M. Zhang, Y. He, Y. Lu, Q. Zhu, X. Zhou, L. Lv, Y. Cao, X. Ma, and Y. Hao, “Improvement of Subthreshold Characteristic of Gate-Recessed AlGaN/GaN Transistors by Using Dual-Gate Structure,” IEEE Trans. Electron Devices, vol. 64, no. 10, pp. 4057-4064, Oct. 2017, doi: 10.1109/TED.2017.2741001.
[89] Y. Wu, W. A. Sasangka and J. A. del Alamo, “Anomalous Source-Side Degradation of InAlN/GaN HEMTs Under High-Power Electrical Stress,” IEEE Trans. Electron Devices, vol. 64, no. 11, pp. 4435-4441, Nov. 2017, doi: 10.1109/TED.2017.2754248.
[90] L. Yuan, H. Chen, and K. J. Chen, “Normally off AlGaN/GaN metal–2DEG tunnel-junction field-effect transistors,” IEEE Electron Device Lett., vol. 32, no. 3, pp. 303–305, Mar. 2011. doi: 10.1109/LED.2010.2095823.
[91] L. Yuan, H. W. Chen, Q. Zhou, C. H. Zhou, and K. J. Chen, “Gate-induced Schottky barrier lowering effect in AlGaN/GaN metal–2DEG tunnel junction field effect transistor,” IEEE Electron Device Lett., vol. 32, no. 9, pp. 1221–1223, Sep. 2011, doi: 10.1109/LED.2011.2159258.
[92] H.-C. Wang, F. J. Lumbantoruan, T.-E. Hsieh, C.-H. Wu, Y.-C. Lin, and E. Y. Chang, ‘‘High-performance LPCVD-SiNx /InAlGaN/GaN MISHEMTs with 850 V 0.98 m·cm2 for power device applications,’’ IEEE J. Electron Devices Soc., vol. 6, pp. 1136–1141, 2018, doi: 10.1109/JEDS.2018.2869776.
[93] C. Yang, X. Luo, A. Zhang, S. Deng, D. Ouyang, F. Peng, J. Wei, B. Zhang, and Z. Li, “AlGaN/GaN MIS-HEMT with AlN interface protection layer and trench termination structure,” IEEE Trans. Electron Devices, vol. 65, no. 11, pp. 5203–5207, Nov. 2018, doi: 10.1109/TED.2018.2868104.
[94] R. Asahara et al., “Effect of nitrogen incorporation into Al-based gate insulators in AlON/AlGaN/GaN metal–oxide–semiconductor structures,” Appl. Phys. Express, vol. 9, no. 10, 2016, Art. no. 101002. doi: 10.7567/APEX.9.101002.
[95] H. Wang, J. Wang, J. Liu, M. Li, Y. He, M. Wang, M. Yu, W. Wu, Y. Zhou, and G. Dai, “Normally-off fully recess-gated GaN metal–insulator–semiconductor field-effect transistor using Al2O3/Si3N4 bilayer as gate dielectrics,” Appl. Phys. Express, vol. 10, no. 10, p. 106502, Oct. 2017, doi: 10.7567/APEX.10.106502.
[96] H.-Y. Liu, W.-C. Hsu, C.-S. Lee, B.-Y. Chou, Y.-B. Liao, and M.-H. Chiang, “Investigation of temperature-dependent characteristics of AlGaN/GaN MOS-HEMT by using hydrogen peroxide oxidation technique,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp. 2760–2766, Aug. 2014, doi: 10.1109/TED.2014.2327123.
[97] Y.-K. Lin, S. Noda, H.-C. Lo, S.-C. Liu, C.-H. Wu, Y.-Y. Wong, Q. H. Luc, P.-C. Chang, H.-T. Hsu, S. Samukawa, and E. Y. Chang, “AlGaN/GaN HEMTs with damage-free neutral beam etched gate recess for high-performance millimeter-wave applications,” IEEE Electron Device Lett., vol. 37, no. 11, pp. 1395–1398, Nov. 2016, doi: 10.1109/LED.2016.2609938.
[98] Ching-Sung Lee, Xue-Cheng Yao, Yi-Ping Huang, Wei-Chou Hsu, “Al2O3-Dielectric InAlN/AlN/GaN Gamma-Gate MOS-HFETs With Composite Al2O2/TiO2 Passivation Oxides,” IEEE J. Electron Devices Soc, vol. 6, no. 1, pp. 1142-1146, Sep. 2018, doi: 10.1109/JEDS.2018.2870844.
[99] M. Wang and K. J. Chen, “Off-state breakdown characterization in AlGaN/GaN HEMT using drain injection technique,” IEEE Trans. Electron Devices, vol. 57, no. 7, pp. 1492–1496, Jul. 2010, doi: 10.1109/TED.2010.2048960.
[100] Q. Zhou, W. Chen, S. Liu, B. Zhang, Z. Feng, S. Cai, and K. J. Chen, “Schottky-contact technology in InAlN/GaN HEMTs for breakdown voltage improvement,” IEEE Trans. Electron Devices, vol. 60, no. 3, pp. 1075–1081, Mar. 2013. doi: 10.1109/ted.2013.2241439.
[101] J. J. Freedsman, T. Kubo, and T. Egawa, “High drain current density E-mode Al2O3/AlGaN/GaN MOS-HEMT on Si with enhanced power device figure-of-merit (4×108 V2−1cm−2),” IEEE Trans. Electron Devices, vol. 60, no. 10, pp. 3079–3083, Oct. 2013. doi: 10.1109/TED.2013.2276437.
[102] J. Gao et al., “Gate-recessed normally OFF GaN MOSHEMT with high temperature oxidation/wet etching using LPCVD Si3N4 as the mask,” IEEE Trans. Electron Devices, vol. 65, no. 5, pp. 1728–1733, May 2018. doi: 10.1109/TED.2018.2812215.
[103] E. Bahat-Treidel, R. Lossy, J. Wurfl, and G. Trankle, “AlGaN/GaN HEMT with integrated recessed Schottky-drain protection diode,” IEEE Electron Device Lett., vol. 30, no. 9, pp. 901–903, Sep. 2009, doi: 10.1109/LED.2009.2026437.
[104] J. Lei, J. Wei, G. Tang, Z. Zhang, Q. Qian, Z. Zheng, M. Hua, and K. J. Chen, “Reverse-blocking normally-OFF GaN double-channel MOS-HEMT with low reverse leakage current and low on-state resistance,” IEEE Electron. Device Lett., vol. 39, no. 7, pp. 1003–1006, Jul. 2018. doi: 10.1109/LED.2018.2832180.
[105] C. Zhou, W. Chen, E. L. Piner, and K. J. Chen, “Schottky-ohmic drain AlGaN/GaN normally off HEMT with reverse drain blocking capability,” IEEE Electron Device Lett., vol. 31, no. 7, pp. 668–670, Jul. 2010, doi: 10.1109/LED.2010.2048885.
[106] J.-G. Lee, B.-R. Park, C.-H. Cho, K.-S. Seo, and H.-Y. Cha, “Low turn-on voltage AlGaN/GaN-on-Si rectifier with gated ohmic anode,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 214–216, Feb. 2013, doi: 10.1109/LED.2012.2235403.
[107] Q. Zhou, Y. Jin, Y. Shi, J. Mou, X. Bao, B. Chen, and B. Zhang, “High reverse blocking and low onset voltage AlGaN/GaN-on-Si lateral power diode with MIS-gated hybrid anode,” IEEE Electron Device Lett., vol. 36, no. 7, pp. 660–662, Jul. 2015, doi: 10.1109/LED.2015.2432171.
[108] A. Q. Huang, “Power semiconductor devices for smart grid and renewable energy systems,” Proc. IEEE, vol. 105, no. 11, pp. 2019–2047, Nov. 2017, doi: 10.1109/JPROC.2017.2687701.
[109] Y. Zhang et al., “Electrothermal simulation and thermal performance study of GaN vertical and lateral power transistors,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2224–2230, Jul. 2013, doi: 10.1109/TED.2013.2261072.
[110] T. Oka, T. Ina, Y. Ueno, and J. Nishii, “100 a vertical GaN trench MOSFETs with a current distribution layer,” in Proc. 31st Int. Symp. Power Semiconductor Devices ICs (ISPSD), May 2019, pp. 303–306, doi: 10.1109/ISPSD.2019.8757621.
[111] D. Ji et al., “Demonstrating >1.4 kV OG-FET performance with a novel double field-plated geometry and the successful scaling of large area devices,” in IEDM Tech. Dig., Dec. 2017, pp. 9.4.1–9.4.4, doi: 10.1109/IEDM.2017.8268359.
[112] C. Gupta et al., “In situ oxide, GaN interlayer-based vertical trench MOSFET (OG-FET) on bulk GaN substrates,” IEEE Electron Device Lett., vol. 38, no. 3, pp. 353–355, Mar. 2017, doi: 10.1109/LED.2017.2649599.