| 研究生: |
蔣欣妤 Chiang, Shin-Yu |
|---|---|
| 論文名稱: |
探討培養基組成與IPTG誘導時間對基因轉殖菌與肌酸酵素生產之影響 Different behaviors for the cell growth and creatinase productivity in various media and induction time of IPTG |
| 指導教授: |
蔡少偉
Tsai, Shau-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 肌酸酵素 、大腸桿菌 、IPTG誘導時間 |
| 外文關鍵詞: | creatinase, E-coli, induction time of IPTG |
| 相關次數: | 點閱:94 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中 文 摘 要
本基因重組菌為JM109大腸桿菌內殖入載體pQE-51-pSCR所構成,而此載體內含Pseudomonas putida NTU-8肌酸酶基因及前端插入一段來自於Aeromonas hydrophila幾丁質分解酵素的信號序列,此基因轉殖菌因質體具有幾丁質酵素的信號序列,所以可將肌酸酵素分泌至細胞間質。
本論文以LB培養基與將其中部分tryptone與yeast extract以3克、6克和9克葡萄糖置換的複合培養基進行醱酵培養,目的在於探討IPTG誘導時間對於個別培養基中菌體濃度與肌酸酵素活性變化之影響。實驗中發現不論在LB或其餘3個添加葡萄糖的複合培養基,在適當的時間誘導皆可促進菌體生長,推測原因可能為誘導後加速某特定胺基酸之利用效率所造成。為確定此構想,而嘗試分析與TCA cycle較接近的絲胺酸、丙胺酸、天門冬胺酸與麩胺酸在醱酵液中的濃度,以進一步瞭解誘導前後其濃度的變化。
ABSTRACT
The recombinant Escherichi coli was constructed by inserting the pQE-51-pSCR01 expression vector in Escherichia coli JM109. It can express the chitinase signal peptide – creatinase hybrid gene by way of the expression vector. Besides, the target protein can be excreted to the periplasmic space due to the fusing of the signal peptide.
We processed the fermentations by incubating the recombinant Escherichi coli in Luria-Bertani medium and the media with parts of tryptone and yeast extract replaced by glucose. Different behaviors for the cell growth and creatinase productivity in various media were found if the inducer of isopropyl-β-D-thiogalactopyranoside (IPTG) was introduced at different periods of time. The cell concentration and creatinase activity were enhanced when inducing IPTG at an appropriate time. Possible explanation for such enhancements was attributed to increasing usage of certain amino acid. For confirming this hypothesis, the analysis of the concentration of serine、aspartic acid、alanine and glutamic acid close to TCA cycle was performed.
參 考 文 獻
Ames, G. F. L., Prody, C. and Kustu, S., “Simple, rapid, and quantitative release of periplasmic proteins by chloroform,” J. Bacteril., 160, 1181-1183 (1984).
Andersson, L., Yang, S., Neubauer, P., and Enfors, S. O., “Impact of plasmid presence and induction on cellular responses in fed batch cultures of Escherichia coli,” J. Biotechnol., 46, 255-263 (1996).
Aristidou, A. A., Yu, P., and San, K. Y., “Effects of glycine supplement on protein production and release in recombinant Escherichia coli,” Biotech. Lett., 15, 331-336 (1993).
Bradford, M. M., “A rapid and sensitive method for the binding of protein dye principle. The utilizing quantity of protein quantitation of microgram,” Anal. Biochem. 72, 248-254 (1976).
Brawner, M. E., “Advances in heterologous gene expression by streptomyces,” Curr. Opin. Biotechnol., 5, 475-481 (1994).
Chang, M. C., Chang, C. C., and Chang, J. C., “Cloning of a Creatinase Gene from Pseudomonas putida in Escherichia coli by Using an Indicator Plate,” Appl. Environ. Microbiol., 58, 3437-3440 (1992).
Donovan, R.S., Robinson, C. W. and Glick, B. R., “Review: Optimizing inducer and culture conditions for expression of foreign proteins under the control of the lac promoter,” Journal of industrial Microbiology, 16, 145-154 (1996).
Engler, C. R., and Robinson, C, W., “Effect of organism type and growth conditions on cell disruption by impingement,” Biotechnol. Lett., 3, 83-88 (1981).
Fornwald, J. A., Donovan, M. J., Gerber, B., keller, J., Taylor, D. P., Arcuri, E. J., and Brawner, M. E., “Soluble forms of the human T cell receptor CD4 are efficiently expressed by streptomyce lividans,” Biotech., 11, 1031-1036 (1993).
Garcia, F.A.P., “Cell wall disruption,” In Kenndy, J. F. & Calral, JMS (end) Recovery Processes for Biological Material, J. Wiley, New York, 47-66 (1993).
George, H. A., Powell, A. L., Dahlgren, M. E., Herber, W. K., Maigetter, R. Z., Burgess, B. W., Stirdivant, S. M. and Greasham, R. L., “Physiological Effects of TGFα-PE40 Expression in Recombinant Escherichia coli JM109,” Biotechnology and Bioengineering, 40, 437-445 (1992).
Haas-Lauterbach, S., Scharf, M., Sprunkel, B., Neeb, M., Koller, K. P., and Engels, J. W., “High Yield Fermentation and purification of tendamistat disulphide analogues secreted by streptomyce lividans,” Appl. Microbiol. Biotechnol., 38, 719-727 (1993).
Han, K., Lim, H. C. and Hong J., “Acetic Acid Formation in Escherichia coli Fermentation,” Biotechnology and Bioengineering, 39, 663-671 (1992).
Hoeffken, H. W., Knof, S. H., Bartlett, P. A., Huber, R., Moellering, H., and Schumacher, G., “Crystal structure Determination, Refinement and Molecular Model of Creatine Amidinohydrolase from pseudomonas putida,” J. Mol. Biol., 204, 417-433 (1988).
Hong, M. C., Chang, J. C., Wu, M. L., and Chang, M. C., “Expression and Export of Pseudomonas putida NTU-8 Ceratinase by Escherichia coli using the chitinase signal sequence of Aeromonas hydrophila,” Biochem. Gene., 36, 407-415 (1998).
Kaplan, A., and Naugler, D., “Creatinine Hydrolase and Creatine Amidinohydrolase. I. Presence in Cell-Free Extracts of Arthrobacter ureafaciens,” Mol. Cell. Biochem., 3, 9-15 (1974).
Kim, S. S., Kim, E. K., and Rhee, J. S., “Effects of growth rate on the production of Pseudomonas fluorescens lipase during the fed-batch cultivation of Escherichia coli,” Biotechnol. Prog., 12, 718-722 (1996).
Klibanov, A. M., and Zaks, A., “Enzymatic catalysis in organic media at 100℃,” Science, 224, 1249-1251 (1984).
Kosinski, M. J., Rinas, U. and Bailey, J. E., “Isopropyl-β-D-thiogalactopyranoside influences the metabolism of Escherichia coli,” Appl. Microbiology Biotechnol, 36, 782-784 (1992).
Koyama, Y., Kitao, S., Yamamoto-Otake, H., Susuki, M., and Nakano, E., “Cloning and Expression of the Creatinase Gene from Flavobacterium sp. U-188 in Escherichia coli,” Agric. Biol. Chem., 54, 1453-1457 (1990).
Matsuda, Y., Wakamatsu, N., Inouye, Y., Uede, S., Hashimoto, Y., Asano, K., and Nakamura, S., “Purification and Characterization of Creatine Amidinohydrolase of Alcaligenes Origin,” Chem. Pharm. Bull., 34, 2155-2160 (1986).
Murray, Granner and Mayes, “HARPER’S生物化學”,合記圖書出版社 (1992).
Neu, H. C. and Heppel, L. A., “The relase of enzymes from Escherichia coli by osmotic shock and during the fermation of spheroplasts,”, J. Biol. Chem. 240, 3685-3692 (1965).
Palaiomylitou, M. A., Matis, K. A., Zouboulis, A. I. and Kyriakidis D. A., “A Kinetic Model Decribing Cell Growth and Production of Highly Active, Recombinant Ice Nucleation Protein in Escherichia coli, ” Biotechnol. Bioeng., 78, 3, May 5, (2002).
Pero, J., and Sloma, A., “Proteaes. In A. L. Sonenshein, J. A. Hoch, and R. Losick (eds.), Bacillus subtilis and other gram-positive bacteria,” American Society of Microbiology, Washington, DC, 939-952 (1993).
Rowland, S. S., Zulty, J. J., Sathyamoorthy, M., Pogell, B. M., and Speeddie, M. K., “The effect of signal sequences on the efficiency of secretion of a heterologous phosphotriesterase by streptomyce lividans,” Microbiol. Biotechnol., 38, 94-100 (1992).
Schutle, H. and Kula, M. R., “Pilot and process-scale techniques for cell disruption,” Biotechnol. Appl. Biochem., 12, 599-620 (1990).
Smith, G. M., “The nature of enzymes,” Biotech., 9, 7-72 (1995).
Talmadge, K., and Gilbert, W., “Cellular location affects protein stability in Escherichia coli,” Proc. Natl. Sci. USA, 79, 1830 (1982).
Walsh, G., and Headon, D., “Protein biotechnology,” John Wiley & Sons, New York, 302-336 (1994).
Wang, D. C., Cooney, C., Demain, A. L., Dunnill, P., Humphrey, A. E., and Lilly, M. D., “Fermentation and Enzyme Technology,” 8 (1979a).
Wang, D. C., Cooney, C., Demain, A. L., Dunnill, P., Humphrey, A. E., and Lilly, M. D., “Fermentation and Enzyme Technology”, 4 (1979b).
White, J. S., and White, D. C., “Sourc Book of Enzymes,” 650 (1997).
王憲忠,“菌體外分泌蛋白質-幾丁分解酶之基因解析Genetic Analysis of Extracellular Chitinase”,國立成功大學生物化學研究所碩士論文 (1993)。
朱玉賢與李毅, “現代分子生物學”,藝軒圖書出版社 (1998)。
徐維富, “以基因轉殖菌株生產creatinase:醱酵、分離純化及酵素物性與化性探討”, 國立成功大學化學工程研究所碩士論文 (2001)。