簡易檢索 / 詳目顯示

研究生: 王新閔
Wang, Shin-min
論文名稱: 實心桿幾何形狀對圓管承受純彎曲負載行為影響之研究
The 1 nf luence of the Geometry of the 501 id Rod on the Behavior of Circular Tubes under Pure Bending
指導教授: 潘文峰
Pan, Wen-Fung
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 83
中文關鍵詞: 純彎曲負載有限元素法實心桿
外文關鍵詞: ANSYS
相關次數: 點閱:80下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文以有限元素ANSYS理論來分析圓管在彎曲負載時,圓管和實心桿的應力分佈的情況。考慮分析的變化因素在圓管方面包含有:圓管的材料及圓管的長度,至於實心桿方面包含有:插入圓管試件的實心桿長度及實心桿前端變化的導角。
    理論分析的結果發現:在考慮不同材料(316L不鏽鋼管及7005-T53鋁合金管)或不同長度的圓管時,實心桿與圓管試件接觸部分的應力分佈幾乎相同。至於考慮插入圓管試件的實心桿長度分析的結果發現:實心桿與圓管試件接觸部分的應力分佈情況,不會因為插入圓管試件的實心桿長度不同而有所變化。此外,考慮實心桿前端的導角變化分析的結果發現:無導角時的實心桿和有導角時的實心桿的應力分佈曲線會有差異,至於本文所分析6種不同的導角的實心桿發現,實心桿與圓管之間的應力分佈曲線幾乎相同。

    This text is it analyse with limited theory, ANSYS of element, round in charge of at crooked load, round in charge of and solid situation that stress distribute of pole to come. Change factor analysed to consider in charge of respect it includes to be as follows, in round Material and length that round in charge of that round in charge of, respect it includes to be as follows, as for solid pole Insert round in charge of solid pole length and solid that front change to lead the horn pole to try piece.
    The result that the theory analyses is found: Considering different materials ( 316L stainless steel is in charge of and 7005- T53 aluminium alloy is managed) Or when the round of different length is in charge of, the solid pole is in charge of the round and try some stresses of contacting and is distributed being nearly the same. The result that analyses of length of solid pole that is in charge of trying one as for considering inserting the round is found: Solid between pole and round is it try piece exposed to some stress distribution situation to in charge of, can insert round in charge of solid pole length to try piece with change to some extent. In addition, the ones that consider solid pole front lead the result analysed in angle change to find: There are not solid pole and stress distribution curve of the solid pole that has while leading the angle while leading the angle that will have differences, as for 6 leading solid pole of horn find solid between pole and round in charge of stress during distribution curve nearly the same different that this text analyse.

    中文摘要 -----------------------------------------------I Abstract --------------------------------------------- II 目 錄 ----------------------------------------------Ⅲ 表 目 錄 --------------------------------------------- VI 圖 目 錄 --------------------------------------------- VII 第一章 緒論------------------------------------------1 1-1 研究動機與背景--------------------------- 1 1-2 文獻回顧--------------------------------- 1 1-3 研究目的--------------------------------- 4 第二章 理論基礎------------------------------------- 6 2-1塑性理論基礎------------------------------ 6 2-2有限元素分析法---------------------------- 9 2-3 AUTOCAD繪圖軟體-------------------------- 12 2-4 ANSYS有限元素分析軟體-------------------- 13 第三章 圓管及實心桿模式之建立----------------------- 19 3-1模型建立與評估---------------------------- 19 3-1-1 圓管與實心桿模型之基本假設條件--------- 19 3-1-2 模型----------------------------------- 20 3-2 圓管與實心桿模型有限元素分析------------- 21 3-2-1 設定元素形式--------------------------- 21 3-2-2 材料性質設定--------------------------- 21 3-2-3 幾何模型之建立------------------------- 22 3-2-4 網格分割------------------------------- 22 3-2-5 邊界條件及負載模式--------------------- 23 3-3 分析流程--------------------------------- 24 第四章 圓管及實心桿ANSYS分析------------------------ 44 4-1測試圓管的分析---------------------------- 44 4-1-1 不同材料的測試圓管--------------------- 44 4-1-2 分析結果------------------------------- 44 4-1-3 不同長度的測試圓管--------------------- 45 4-1-4 分析結果------------------------------- 45 4-2實心桿幾何因素的分析---------------------- 45 4-2-1 實心桿尖端的不同導角----------------- 45 4-2-2 分析結果------------------------------- 46 4-2-3不同長度的實心桿---------------------- 46 4-2-4 分析結果------------------------------- 46 第五章 結論與未來展望------------------------------- 77 5-1結論-------------------------------------- 77 5-1-1軟體方面-------------------------------- 77 5-1-2分析結果-------------------------------- 77 5-2未來展望---------------------------------- 78 參考文獻 --------------------------------------------- 80 自 述 --------------------------------------------- 83

    [1] Kyriakides, S. and Shaw, P.K., “Response and Stability of Elastoplastic Circular Pipes under Combined Bending and External Pressure,” International Journal of Solids and Structures, Vol. 18, No. 11, pp. 957-973 (1982).
    [2] Shaw, P. K. and Kyriakides, S., “Inelastic Analysis of Thin-Walled Tubes under Cyclic Bending,” International Journal of Solids and Structures, Vol. 21, No. 11, pp.1073-1110 (1985).
    [3] Kyriakides, S. and Shaw, P. K., ”Inelastic Buckling of Tubes under Cyclic Loads,” ASME Journal of Pressure Vessel and Technology, Vol. 109, pp. 169-178 (1987).
    [4] Corona, E., and Kyriakides, S., “On the Collapse of Inelastic Tubes under Combined Bending and Pressure,” International Journal of Solids and Structures, Vol. 24, No. 5, pp. 505-535 (1988).
    [5] Corona. E. and Kyriakides, S., “An Experimental Investigation of the Degradation and Buckling of Circular Tubes under Cyclic Bending and External Pressure,” Thin-Walled Structures, Vol. 12, pp. 229-263 (1991).
    [6] Kyriakides, S. and Ju, G.T., “Bifurcation and Localization Instabilities in Cylindrical Shells under Bending,” - I. Experiments. International Journal of Solids and Structure, Vol. 29, No. 9, pp. 1117-1142 (1992).
    [7] Kyriakides, S. and Ju, G.T., “Bifurcation and Localization Instabilities in Cylindrical Shells under Bending,” - II. Predictions. International Journal of Solids and Structures, Vol. 29, No. 9, pp. 1143-1171 (1992).
    [8] Pan, W. F., Wang, T. R. and Hsu, C. M., “A Curvature- Ovalization Measurement Apparatus for Circular Tubes under Cyclic Bending,” Experimental Mechanics - an International Journal, Vol. 38, No. 2, pp. 99-102 (1998).
    [9] Pan, W. F. and Her, Y. S., “Viscoplastic Collapse of Thin-Walled Tubes under Cyclic Bending,” ASME Journal of Engineering Materials and Technology, Vol. 120, pp. 287-290 (1998).
    [10] Pan, W.F. and Hsu, C.M., “Viscoplastic Analysis of Thin-Walled Tubes under Cyclic Bending”, Structural Engineering and Mechanics - an International Journal, Vol. 7, No. 5, pp. 457-471 (1999).
    [11] Hsu, C.M., Chiou, S.B. and Chang, Y.S., “Inelastic Response and Stability of Titanium Allot Tubes under Cyclic Bending”, JSME International Journal (Japan Society of Mechanical Engineers), Series A, Vol. 43, No. 1, pp. 63-68 (2000).
    [12] Lee, K. L. and Pan, W. F., “Viscoplastic Collapse of Titanium Alloy Tubes under Cyclic Bending,” Structural Engineering and Mechanics - an International Journal, Vol. 11, No. 3, pp. 315-324 (2001).
    [13] Lee, K.L., Pan, W.F. and Kuo, J.N., “The Influence of the Diameter-to-Thickness Ratio on the Stability of Circular Tubes under Cyclic Bending,” International Journal of Solids and Structure, Vol. 38, pp. 2401-2413 (2001).
    [14] Pan, W. F. and Lee, K. L., “The Effect of Mean Curvature on the Response and Collapse of Thin-Walled Tubes under Cyclic Bending,” JSME International Journal (Japan Society of Mechanical Engineers), Series A, Vol. 45, No. 2, pp. 309-318 (2002).
    [15] Lee, K.L., and Pan, W.F, “Pure Bending Creep of SUS 304 Stainless Steel,” Steel and Composite Structures – an International Journal, Vol. 2, No. 6, pp. 461-474 (2002).
    [16] Lee, K.L., Pan, W.F and Hsu, C.M., “Experimental and Theoretical Evaluations of the Effect between Diameter-to-Thickness Ratio and Curvature-Rate on the Stability of Circular Tubes under Cyclic Bending,” JSME International Journal (Japan Society of Mechanical Engineers), Series A, Vol. 47, No. 2, pp. 212-222 (2004).
    [17] Chang, K.H., Hsu, C.M., Sheu, S.R. and Pan, W.F, “Viscoplastic Response and Collapse of 316L Stainless Steel Tubes under Cyclic Bending,” Steel and Composite Structures – an International Journal, in press (2005).
    [18] 李輝煌, “ANSYS 工程分析基礎與觀念”, 高立圖書, 2005.
    [19] 康淵, 陳信吉, “ANSYS入門”, 全華圖書, 2006.

    下載圖示 校內:2009-02-04公開
    校外:2009-02-04公開
    QR CODE