| 研究生: |
蘇祐尼 Su, Yu-Ni |
|---|---|
| 論文名稱: |
自組裝交聯β-環糊精之光學辨識探討 Optical Resolution via Crosslinked Self-assembly β-Cyclodextrin |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | β-環糊精 、交聯 、掌性 、光學分割 |
| 外文關鍵詞: | β-cyclodextrin, cross-linking, chiral, optical resolution |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用良溶劑/非良溶劑法,製備β-環糊精的自組裝膠體。鈉離子的存在與β-環糊精上的極性羥基(-OH)有配位作用,進而促使其在離子交聯的影響下形成了柱狀的構造。當β-環糊精與戊二醛進行交聯反應,則會形成截然不同的雙螺旋構造,意味著戊二醛對β-環糊精擁有較佳的交聯特性,且雙螺旋構造通常須在掌性環境下才會形成。當氯化鈉及戊二醛同時存在時,反而導致鈉離子與氫氧基間的相互作用,抑制了戊二醛的交聯作用,使得自組裝β-環糊精間的交聯減少,並造成交聯不完全的構造。二異氰酸環己烷的高反應性,妨礙了高度規則性的自組裝β-環糊精交聯結構體的產生。針對如此合成的交聯β-環糊精與數種外消旋混合物所作的光學辨識性探討,所得結果顯示,β-環糊精所具有的掌性空腔,可能提供了光學辨識所需的掌性結合配位點,使其能夠辨別鏡像異構物,而達成光學分割的目的。
The self-assembly of supramolecular β-cyclodextrins was fabricated via good solvent/poor solvent method. The presence of sodium ions was expected to facilitate the formation of cross-linked columnar construction by coordinating with polar hydroxyl groups on β-cyclodextrin. When the self-assembled β-cyclodextrin was cross-linked by glutraldehyde, an interesting double helix construction was observed, indicating better cross-linking properties. However, the dual presence of sodium chloride and glutaraldehyde may cause unwanted interactions between sodium and hydroxyl groups leading to the inhibition of glutaraldehyde crosslinking, resulting in the reduction of β-cyclodextrin self-assembly crosslinking and incompletely crosslinked constructions. The high reactivity of diisocyanatohexane impeded the formation of highly ordered crosslinked construcstion of self-assembled β-cyclodextrin. The results of the optical resolution of various racemic mixtures with the synthesized cross-linked β-cyclodextrin reveal that the chiral cavities of the synthesized cross-linked β-cyclodextrin may serve some chiral binding sites for enantiomers distinguishing.
[1] T. Kullick, R. Ulber, H. H. Meyer, T. Scheper, and K. Schügerl (1994), "Biosensors for enantioselective analysis," Analytica Chimica Acta, 293(3), pp. 271-276.
[2] H. Izawa, K. Kawakami, M. Sumita, Y, Tateyama, J. P. Hill, and K. Ariga (2013), "β-cyclodextrin-crosslinked alginate gel for patient-controlled drug delivery systems: regulation of host-guest interactions with mechanical stimuli," Journal of Materials Chemistry B, 1, pp. 2155-2161.
[3] B. Ekberg, L. Anderson, and K. Mosbach (1989), "The synthesis of an active derivative of cyclomalto hexose for the hydrolysis of esters and the formation of amide bonds," Carbohydrate Research, 192, pp. 111-117.
[4] K. Takahashi (1998), "Organic reactions mediated by cyclodextrins," Chemical Reviews, 98(5), pp. 2013-2034.
[5] A. M. Granados and R. H. de Rossi (2001), "Effect of cyclodextrin on the intramolecular catalysis of amide hydrolysis," The Journal of Organic Chemicstry, 66(5), pp. 1548-1552.
[6] Y. Li, J. Liu, G. Du, H. Yan, H. Wang, H. Zhang, W. An, W. Zhao, T. Sun, F. Xin, L. Kong, Y. Li, A. Hao , and J. Hao (2010), "Reversible heat-set organogel based on supramolecular interactions of β-cyclodextrin in N,N-dimethylformamide," The Journal of Physical Chemistry B, 114(32), pp. 10321-10326.
[7] L. Kong, T. Sun, F. Xin, W. Zhao, H. Zhang, Z. Li, Y. Li, Y. Hou, S. Li, and A. Hao (2011), "Lithium chloride-induced organogel transformed from precipitate based on cyclodextrin complexes," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 392(1), pp. 156-162.
[8] W. Zhao, Y. Li, T. Sun, H. Yan, A. Hao, F. Xin, H. Zhang, W. An, L. Kong, and Y. Li (2011), "Heat-set supramolecular organogels composed of β-cyclodextrin and substituted aniline in N,N-dimethylformamide," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 374(1-3), pp. 115-120.
[9] P. Xing, S. Li, F. Xin, Y. Hou, A. Hao, T. Sun, and J. Su (2013), "Multi-responsive supramolecular organogel with a crystalline-like structure," Carbohydrate Research, 367, pp. 18-24.
[10] Z. Li, A. Hao, and J. Hao (2014), "Formation of heat-triggered supramolecular organogel in which β-cyclodextrinas sole gelator," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, pp. 8-15.
[11] T. R. Dawsey and C. L. McCormick (1990), "The lithium chloride/dimethylacetamide solvent for cellulose: a literature review," Journal of Macromolecular Science, Part C: Polymer Reviews, 30(3-4), pp. 405-440.
[12] P. Xing, X. Chu, S. Li, Y. Hou, M. Ma, J. Yang, and A. Hao (2013), "Self-recovering β-cyclodextrin gel controlled by good/poor solvent environments," RCS Advanced, 3, pp. 22087-22094.
[13] X. Chu, P. Xing, S. Li, M. Ma, and A. Hao (2014), "Inorganic salt-tuned multiple self-assemblies of supramolecular β-cyclodextrin gel," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 461, pp. 11-17.
[14] D. L. Wernick and S. Scypinski (1984), "Process for selective separation of molecular species from mixtures thereof using cyclodextrins," U. S. Patent 4,426,292.
[15] Y. Sato and Y. Suzuki (1985), "Optical resolution of drugs by cyclodextrin complexation," Chemical and Pharmaceutical Bulletin, 33(10), pp. 4606-4609.
[16] S. H. Lee, B. H. Kim, and Y. C. Lee (1995), "Chiral recognition models of enantiomeric separation on cyclodextrin chiral stationary phases," Bulletin of the Korean Chemical Society, 16(4), pp. 305-309.
[17] S. K. Branch, U. Holzgrabe, T. M. Jefferies, H. Mallwitz, and M. W. Matchett (1994), "Chiral discrimination of phenethylamines with beta-cyclodextrin and heptakis(2,3-di-O-acetyl)beta-cyclodextrin by capillary electrophoresis and NMR spectroscopy," Journal of Pharmaceutical and Biomedical Analysis, 12(12), pp. 1507-1517.
[18] S. K. Branch, U. Holzgrabe, T. M. Jefferies, H. Mallwitz, and F. J. R. Oxley (1997), "Effect of β-cyclodextrin acetylation on the resolution of phenethylamines with capillary electrophoresis and nuclear magnetic resonance spectroscopy," Journal of Chromatography A, 758, pp. 277-292.
[19] M. Wedig and U. Holzgrabe (1999), "Resolution of ephedrine derivatives by means of neutral and sulfated heptakis(2,3-di-O-acetyl)β-cyclodextrins using capillary electrophoresis and nuclear magnetic resonance spectroscopy," Electrophoresis, 20, pp. 2698-2704.
[20] M. Wedig, S. Laug, T. Christians, M. Thunhorst, and U. Holzgrabe (2002), "Do we know the mechanism of chiral recognition between cyclodextrins and analytes?" Journal of Pharmaceutical and Biomedical Analysis, 27, pp. 531-540.
[21] K. Singh, P. G. Ingole, H. C. Bajaj, and H. Gupta (2012), "Preparation, characterization and application of β-cyclodextrin-glutaraldehyde crosslinked membrane for the enantiomeric separation of amino acids," Desalination, 298, pp. 13-21.
[22] Y. Hou, T. Sun, F. Xin, P. Xing, S. Li, and A. Hao (2014), "Transformation from a heat-set organogel to a room-temperature organogel induced by alcohols," Journal of Inclusion Phenomena and Macrocyclic Chemistry, 79, pp. 133-140.
[23] A. Ryzhakov, T. D. Thi, J. Stappaerts, L. Bertoletti, K. Kimpe, A. R. S Couto, P. Saokham, G. V. den Mooter, P. Augustijns, G. W. Somsen, S. Kurkov, S. Inghelbrecht, A. Arien, M. I. Jimidar, K. Schrijnemakers, and T. Loftsson (2016), "Self-assembly of cyclodextrins and their complexes in aqueous solutions," Journal of Pharmaceutical Sciences, 105, pp. 2556-2569.
[24] F. Cramer and W. Dietsche (1959), "Spaltung von racematen mit cyclodextrinen," Chemische Berichte, 92(2), pp. 378-384.
[25] A. Harada, M. Furue, and S. Nozakura (1978), "Optical resolution of mandelic acid derivatives by column chromatography on crosslinked cyclodextrin gels," Journal of Polymer Science: Polymer Chemistry Edition, 16, pp. 189-196.