簡易檢索 / 詳目顯示

研究生: 許逢元
Hsu, Feng-yuan
論文名稱: 二維有限水槽之瞬時造波研究
Studies on the transient wave motion generated by a piston-type wave-maker in a finite flume
指導教授: 林西川
Lin, Shi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 41
中文關鍵詞: 瞬時波線性解Ursell 數試驗
外文關鍵詞: transient wave, Ursell number
相關次數: 點閱:106下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出在有限長度之水槽中,以推移式造波板從靜止開始推移造波的瞬時線性解,且進行模型實驗以驗證本文理論解之物理適用性並探討實驗之分析結果。
    本文理論解之水位和Madsen (1970)的解極為吻合;波高衝程比與相對水深的關係也和Dean and Dalrymple (1992)的結果吻合;實驗結果則都顯示較理論值偏小。理論與實驗結果的誤差會隨波浪Ursell數的增大而變大。而從本研究之理論解與實驗結果都發現當波浪達到穩定前會存在一個比穩定波高還大的波;也發現在Ursell數較小的波浪情況下,波浪達到穩定的時間會隨著距離的增加而增加。

    An analytical solution in Cartesian coordinates for transient waves from rest generated by a periodically oscillating piston-type wavemaker in a flume of finite length is proposed in this paper. The mathematical validity of the proposed solution will be verified by comparing with the previous solutions in form of Fourier integral for both cases of periodic and step paddle motions. The physical validity it also verified by comparing with experimental results carried out in NCKU. Larger errors of water elevations between the analytic solution and experimental results occur when Ursell number is large than those when Ursell number is small. Both analytic solution and experimental results show that the amplitude of water elevation first increases with time then reaches a maximum before a steady amplitude for the periodically oscillating wavemaker. When Ursell number is small, the time which wave reaches steady waves increases along with the distance increase.

    中文摘要 1 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 符號說明 IX 第一章 緒論 1 1-1研究動機 1 1-2文獻回顧 2 1-3本文組織 3 第二章 理論分析 5 2-1有限長度水槽造波理論之通解 5 2-2週期造波時之特解 9 2-3 半無限水槽造波理論之Kennard’s解 12 第三章 實驗資料及分析 13 3-1實驗設備 13 3-2實驗配置 14 3-3實驗波浪條件 15 3-4實驗步驟 18 3-5實驗數據分析 19 第四章 分析結果與討論 21 4-1本文理論計算與Madsen結果之比較 21 4-2實驗之造波板位移與理論位移之比較 22 4-3本文理論計算與實驗之波高衝程比之比較 25 4-4本文計算水位與實驗水位之比較 26 4-5不同位置處之水位比較 32 第五章 結論與建議 38 參考文獻 39

    1. Biésel, F. and F. Suquet, 1951, “ Les appareils générateurs de houle en laboratoire” La Huille Blanche 6 (2), (4), (5).
    2. Body, G. L., 2004, “Inclined wavemaker in linear water wave theory” Applied Mathematics Letters, 17, 1213-1220.
    3. Chang, H. K. and S. C. Lin, 2007, “Transient wavemaker theory for finite-length flume” A paper submitted to Wave Motion.
    4. Daugaard, E., 1972, “Generation of regular waves in the laboratory. Doctoral Dissertation, Institute of Hydrodynamics and Hydraulic engineering, Technical University of Denmark.
    5. Dean, R. and R. A. Dalrymple, 1992, “Water Wave Mechanics for Engineers and Scientists” World Scientific, Singapore.
    6. Flick, R. E. and R. T. Guza, 1980, “Paddle generated waves in laboratory channels” Journal of Waterways, Port, Coastal and Ocean, ASCE, 106, 79-97.
    7. Fontanet, P., 1961, “Théorie de la génération de la houle cylindrique par un batteur plan” La Houille Blanche 16 (3-31) (part 1) and 174–196 (part 2).
    8. Galvin, C. J., 1964, “Wave-height prediction for wave generators in shallow water” Technical Memorandum No.4, US Army Coastal Engineering Research Center, Washington, D.C..
    9. Havelock, T. H., 1929, “Forced surface wave on water” Philosophical Magazine, Series 7, 8, 569-576.
    10. Hudges, S. A., 1993, “Physical models and laboratory techniques in coastal engineering” World Scientific, Singapore.
    11. Hudspeth, R. T., M.-C. Chen, 1981, “Design curves for hinged wavemakers: Theory” Journal of Hydraulics, ASCE, 107, 533-552.
    12. Hudspeth, R. T. and M.-C. Chen, 1981, “Design curves for hinged wavemakers: Experiment” Journal of Hydraulics, ASCE, 107, 553-574.
    13. Hudspeth, R.T. and W. Sulisz, 1991, “Stokes drift in two-dimensional wave flumes” Journal of Fluid Mechanics, 230, 209–229.
    14. Hyun, J.M., 1976, “Theory for hinged wavemakers of finite draft in water of constant depth” Journal of Hydraulic Research, 10 (1), 2-7.
    15. Joo, S. W., W. W. Schultz and A. F. Messiter, 1990, “An analysis of the initial-value wavemaker problem” Journal of Fluid Mechanics, Vol. 214, 161-183.
    16. Keating, T. and N. B. Webber, 1977, “The generation of periodic waves in a laboratory channel; a comparison between theory and experiment” Proc. of the Civil Engineers, 63, 819-832.
    17. Kim, T. I., 1985, “Mass transport in laboratory wave flumes” Dissertation, Oregon State University, Corvallis, Oregon, USA.
    18. Kennard, E. H., 1949, “Generation of surface waves by a moving partition” Quarterly of applied mathematics, 7(3), 303-312.
    19. Lee, J. F., J. R. Kuo, and C. P. Lee, 1987, “Transient wavemaker theory” Journal of hydraulic research, 27 (5), 99, 651-663.
    20. Madsen, O. S., 1970, “Waves generated by a piston-type wavemaker” Proc. 12nd Conf. Coastal Eng., ASCE 1, 589-607.
    21. Mobayed, W. I. and A. N. Williams, 1994, “Second-order bichromatic waves produced by a generic planar wavemaker in a two-dimensional wave flume” Journal of Fluids and Structures 8, 73–92.
    22. Moraes, C. C., F. S. Ramos and M. M. Carvalho, 1972, “Waves induced by Nonpermanent paddle movements” Proc. 13rd Conf. Coastal Eng., ASCE, 1, 707-722.
    23. Patel, M. H. and P. A. Ionnaou, 1980, “Comparative performance study of paddle- and wedge-type wave generators” Journal of Hydronaulics, 14, 5-9.
    24. Sand, S. E. and E. P. D. Mansard, 1986, “Reproduction of higher harmonics in regular waves” Ocean Engineering, 13, 57-83.
    25. Sulisz, W. and R. T. Hudspeth, 1993, “Complete second-order solution for water waves generated in wave flumes” Journal of Fluids and Structures 7, 253–268.
    26. Takayama, T., 1984, “Theory of oblique waves generated by serpent-type wave-maker” Coastal Engineering in Japan 27, 1–19.
    27. Ursell, F., R. G. Dean and Y. S. Yu, 1960, “Forced small-amplitude water waves: A comparison of theory and experiment” Journal of Fluid Mechanics, 7, 3-52.

    下載圖示 校內:立即公開
    校外:2008-01-24公開
    QR CODE