簡易檢索 / 詳目顯示

研究生: 姚圣姝
Yao, Sheng-Shu
論文名稱: 台灣黃菀屬植物熱休克基因遺傳多樣性研究及保育
Genetic diversity and conservation of small heat shock gene family in Senecio (Asteraceae) of Taiwan
指導教授: 蔣鎮宇
Chiang, Tzen-Yuh
葉靖輝
Yeh, Ching-Hui
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 97
中文關鍵詞: 熱逆境黃菀屬小分子量熱休克基因家族基因複製負向天擇分子伴隨子偽基因
外文關鍵詞: Senecio, heat stress, gene duplication, negative selection, small heat shock protein gene family, pseudogene, molecular chaperone
相關次數: 點閱:151下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    一般植物本身會產生小分子量熱休克蛋白質來克服熱逆境,而台灣黃菀屬植物大多分布於海拔400-3950公尺以上山區,其生育環境為向陽坡地,易受環境逆境的直接衝擊,為研究小分子量熱休克蛋白質基因家族之最佳素材。本研究之目的是研究黃菀屬植物內小分子量熱休克基因家族之遺傳變異程度、演化關係和生理功能。親緣分析結果,黃菀屬植物內第一型和葉綠體型的小分子量熱休克蛋白質在親緣樹狀圖上,皆顯示物種之間無顯著分群,彼此混雜,證明黃菀屬物種早在種化之前就經由基因複製(gene duplication)的機制產生基因多樣性。天擇測驗的結果,第一型小分子量熱休克蛋白質基因家族之Tajima’s D值呈現顯著負值、Ka/Ks值普遍小於1,顯示此基因受到強烈負向天擇作用,偏向同義置換來保留重要功能性基因,因此胺基酸序列呈現高度保守,其中C端胺基酸序列相似度高於N端區域。而葉綠體型小分子量熱休克蛋白質基因家族在天擇選汰測驗下,其Tajima’s D呈現負值、Ka/Ks值普遍小於1,顯示此基因受到負向天擇作用,但不顯著,其胺基酸序列變異程度偏低,並擁有甲硫氨酸區域(Met-rich)。在生理實驗中顯示黃菀屬植物的確在受到熱逆境時會產生第一型小分子量熱休克蛋白質的表現,顯示此基因是具有分子伴隨子(molecular chaperone)的保護功能,至於表現調控機制未來仍需深入探究。另外在黃菀屬植物內第一型小分子熱休克蛋白質基因家族內發現有7個偽基因(pseudogene)存在,雖然尚不清楚其真正的生物特性,希望在未來能提供學者進一步研究。

    Abstract

    In plants, small heat-shock proteins (sHSPs) are the predominant stress proteins in response heat stress. Senecio (Asteraceae) plants grow at habitats of elevations of 400-3950m with highly fluctuating temperatures that they are good samples to study sHSPs. The main purpose of this project is to study the genetic diversity, evolution and gene functions in small heat shock protein gene family in the Senecio. Phylogeny tree reveals that the gene duplications of sHSPs were prior to the speciation events in the genus Senecio. Results of neutral selection tests, the significant negative values of Tajima’s D test and Ka/Ks are less than 1 and the cytosolic class I sHSPs are under the negative selection. The cytosolic class I sHSPs prefer have synomous changes to nonsynomous changes indicates the gene function is important and unchangeable. They are more conserved in the C-terminal domain than in the N-terminal domain in the cytosolic class I sHSPs amino sequences. The negative values of Tajima’s D test and Ka/Ks are less than 1 reveal that the CP class sHSPs is also under negative selection. There is Met-rich region in the conserved of amino acid sequence in the CP class sHSPs. Under the heat treatment, cytosolic class I sHSPs was produced proteins as molecular chaperone to protect Senecio. The regulation and function of sHSPs genes are needed to study in the future. Finally, 7 pseudogenes were found in the cytosolic class I sHSP gene family. Although much effort has been devoted to understanding the function of pseudogenes, their biological roles remain largely unknown. Hope that they will provide information for the future research.

    目錄 中文摘要…………………………………………………………………………i 英文摘要…………………………………………………………………………ii 誌謝………………………………………………………………………………iii 目錄………………………………………………………………………………iv 表目錄……………………………………………………………………………vi 圖目錄……………………………………………………………………………vii 第壹章 緒言……………………………………………………………………1 一、 遺傳多樣性的保育……………………………………………1 二、 植物與環境逆境………………………………………………3 三、 熱休克基因……………………………………………………5 四、 小分子量熱休克基因…………………………………………9 五、 小分子量熱休克蛋白質基因的演化…………………………12 六、 高山植物菊科黃菀屬植物的特性……………………………15 七、 研究目的………………………………………………………17 第貳章 材料與方法……………………………………………………………18 一、 研究材料………………………………………………………18 二、 實驗方法………………………………………………………18 第參章 結果……………………………………………………………………28 一、 黃菀屬植物sHSPs基因家族保守序列片段的獲取…………28 二、 黃菀屬植物sHSPs全長基因序列的獲取……………………30 三、 黃菀屬植物sHSPs全長基因之遺傳變異特性………………32 四、 陸生植物sHSPs基因家族之比較……………………………35 五、 黃菀屬植物sHSPs的表現……………………………………37 第肆章 討論……………………………………………………………………38 一、 黃菀屬植物和其他陸生植物的sHSPs DNA和胺基酸序列 探討……………………………………………………………38 二、 黃菀屬植物和其他陸生植物sHSPs的親緣關係與演化探 討………………………………………………………………42 三、 黃菀屬植物sHSPs基因家族內遺傳變異所受天擇效應之探 討………………………………………………………………45 四、 黃菀屬植物sHSPs基因家族之偽基因探討…………………49 五、 高山黃菀屬植物與sHSPs基因家族的重要性探討…………51 第伍章 結論……………………………………………………………………53 第陸章 參考文獻………………………………………………………………54 表…………………………………………………………………………………66 圖…………………………………………………………………………………86 表目錄 表1、 本研究所用菊科黃菀屬植物樣本名稱與採集地點……………………66 表2、 第一型sHSPs基因片段所使用的引子序列……………………………67 表3、 第一型sHSPs在Walking和iPCR所使用的引子序列………………67 表4、 第一型sHSPs全長基因所使用的引子序列……………………………69 表5、 葉綠體型sHSPs基因片段所使用的引子序列…………………………69 表6、 葉綠體型sHSPs全長基因所使用的引子序列…………………………70 表7、 本研究獲取第一型sHSPs基因片段序列之樣本………………………70 表8、 本研究獲取葉綠體型sHSPs基因片段序列之樣本……………………71 表9、 本研究獲取第一型sHSPs基因全長序列之樣本及特性………………72 表10、本研究獲取葉綠體型sHSPs基因全長序列之樣本及特性……………74 表11、 NCBI基因資料庫中第一型和葉綠體型的sHSPs序列………………75 表12、 黃菀屬植物第一型sHSPs基因家族胺基酸置換表……………………77 表13、 黃菀屬植物葉綠體型sHSPs基因家族胺基酸置換表…………………77 表14、 本研究獲取黃菀屬植物中第一型sHSPs全長基因序列………………78 表15、 本研究第一型sHSPs基因家族序列全長之DNA變異綜合表………81 表16、 本研究葉綠體型sHSPs基因家族序列全長之DNA變異綜合表……83 表17、 各PAML模式下之parameter estimates以及log-likelihood values……………………………………………………………………85 圖目錄 圖1、 黃菀屬植物以聚類分析法構築第一型sHSPs核酸序列親緣樹狀圖…………………………………………………………………………86 圖2、 黃菀屬植物以聚類分析法構築葉綠體型sHSPs基因序列親緣樹狀圖…………………………………………………………………………87 圖3、 陸生植物與黃菀屬植物的第一型sHSPs胺基酸序列比對……………88 圖4、 陸生植物與黃菀屬植物的葉綠體型sHSPs胺基酸序列比對…………90 圖5、 陸生植物與黃菀屬植物以聚類分析法構築第一型sHSPs基因序列親緣樹狀圖……………………………………………………………………91 圖6、 陸生植物與黃菀屬植物以聚類分析法構築葉綠體型sHSPs基因序列親緣樹狀圖…………………………………………………………………92 圖7、 陸生植物與黃菀屬植物的第一型sHSPs基因家族之親緣網狀圖……93 圖8、 陸生植物與黃菀屬植物的葉綠體型sHSPs基因家族之親緣網狀圖…94 圖9、 黃菀屬植物第一型sHSPs基因家族在不同溫度下的蛋白質表現……95 圖10、各植物的第一型sHSPs基因家族在40℃3小時下的蛋白質表現……96 圖11、在pET21a轉殖大腸桿菌細胞中表現黃菀屬植物內第一型sHSPs基因…………………………………………………………………………97

    第陸章 參考文獻

    Boston, R. S., P. V. Viitanen and E. Vierling, 1996. Molecular chaperones and
    protein folding in plants. Plant Mol. Biol. 32:191-222.
    Buchner, J., 1999. Hsp90 and Co.- a holding for folding. TIBS 24:136-141.
    Burke, J. J., 2001. Identification of genetic diversity and mutations in higher plant acquired thermotolerance. Physiol. Plant. 112:167-170.
    Caspers, G. J., J. A. M. Leunissen and W. W. de Jong, 1995. The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J. Mol. Evol. 40:238-248.
    Chaitanya, K.V., D. Sundar, S. Masilamani, and A. R. Reddy, 2002. Variation in heat stress-induced antioxidant enzyme activities among three mulberry cultivars. Plant Growth Regul. 36:175-180.
    Chen, W. J., S. H. Chang, M. E. Hudson, W. K. Kwan, J. Li, B. Estes, D. Knoll, L. Shi and T. Zhu, 2005. Contribution of transcriptional regulation to natural variations in Arabidopsis. Genome Biol. 6(4).
    Chiang, Y. C., B. A. Schaal, X. J. Ge and T. Y. Chiang, 2004. Range expansion leading to departures from neutrality in the non-symbiotic hemoglobin gene and the cpDNA trnL-trnF intergenic spacer in Trema dielsiana (Ulmaceae). Mol. Phyl. Evol.. 31:929-942.
    Chung, S. W. and C.-I. Peng, 2002. Senecio kuanshanensis(Asteraceae), a new species from southern Taiwan. Bot. Bull. Acad. Sin. 43:155-159.
    Doyle, J. J. and J. L. Doyle, 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11-15.
    Edelman, L., E. Czarnecka and J. L. Key, 1988. Induction and Accumulation of heat shock-specfic poly(A+) RNAs and proteins in soybean seedlings during arsenite and cadmium treatments. Plant Physiol.. 86:1048-1056.
    Editorial, committee of the Flora of Taiwan, 1998. Flora of Taiwan 2nd. Taipei, Taiwan, 4:1051-1062.
    Ellis, J., 1987. Proteins as molecular chaperons. Nature. 328:378-379.
    Ellis, R. J. and S. M. Van der Vies, 1991. Molecular chaperones. Annu. Rev. Biochem. 60:321-347.
    Excoffier, L. and P. E. Smouse, 1994. Using allele frequencies and geographic
    subdivision to reconstruct gene trees within a species: Molecular variance
    parsimony. Genetics 136:343-359.
    Feder, M.E. and G. E. Hofmann, 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243-282.
    Forreiter, C., M. Kirschner and L. Nover, 1997. Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo. Plant Cell. 9:2171-2181.
    Frydman, J., 2001. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem. 70:603–647.
    Futuyma, D. J.,1997. Evoltuionary biology, 2nd ed. Sinauer, Sunderland, Massachusetts, USA.
    Goncalves, I., L. Duret, and D. Mouchiroud. 2000. Nature and structure of human genes that generate retropseudogenes. Genome Res. 10: 672-678.
    Gurley, W. B. and J. L. Key, 1991. Transcriptional regulation of the heat-shock response: a plant perspective. Biochemistry. 30:1-12.
    Harrison, P.M., H. Hegyi, S. Balasubramanian, N. M. Luscombe, P. Bertone, N. Echols, T. Johnson and M. Gerstein, 2002. Molecular fossils in the human genome: Identification and analysis of the pseudogenes in chromosomes 21 and 22. Genome Res. 12:272-280.
    Higgins, D. G., A. J. Bleasby and R. Fuchs, 1992. CLUSTAL V: improved
    software for multiple sequence alignment. Cabios 8:189-191.
    Hirotsune, S., N. Yoshida, A. Chen, L. Garrett, F. Sugiyama, S. Takahashi, K.
    Yagami, A. W. Boris and A. Yoshiki, 2003. An expressed pseudogene
    regulates the messenger-RNA stability of its homologous coding gene.
    Nature. 423:91-96.
    Hoffmann, A. A. and P. A. Parsons, 1991. Evolutionary Genetics and Environmental Stress. Oxford University Press, New York.
    Hofmann, G. E. and G. N. Somero, 1995. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus. J. Exp. Biol. 198:1509–1518.
    Hong, S. K and E. Vierling, 2000. Mutants of Arabidopsis thaliana defective in the acquisition of tolerance to high temperature stress. Proc Natl Acad Sci USA. 97:4392-4397.
    Hong, S. K., U. Lee and E. Vierling, 2003. Arabidopsis hot mutants define multiple functions required for acclimation to high temperatures. Plant Physiol. 132:757-767.
    Horvth, I., A. Glatz, V. Varvasovszki, Z. Tґk, T. Pli, G. Balogh, E. Kovcs, L. Ndasdi, S. N. Benk, F. Jo and L. Vgh, 1998. Membrane physical state controls the signaling mechanism of the heat shock response in Synechocystis PCC 6803: identification of hsp17 as a “fluidity gene”. Proc. Natl. Acad. Sci. USA. 95:3513-3518.
    Hsieh, M. S., J. T. Chen, T. L. Jinn, Y. M. Chen and C. Y. Lin, 1992. A class of
    soybean low molecular weight heat shock proteins. Plant Physiol.. 99: 1279-1284.
    Hudson, R. R., M. Kreitman and M. Aguad, 1987. A test of neutral molecular evolution based on nucleotide data. Genetics. 116:153-159.
    Huey, R.B. and D. A. Berrigan, 1996. Testing evolutionary hypothesis of acclimation. In: Animals and Temperature: Phenotypic and Evolutionary Adaptation (eds Johnston, I.A. & Bennett, A.F. ). Cambridge University Press, Cambridge, 205-237.
    Iba, K., 2002. Acclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology. 53:225-45.
    Ingolia, T. D., M. J. Slater and E. A. Criage, 1982. Saccharomyces cerevisiae contains a complex multigene family related to the major heat shock-inducible gene of Drosophila. Mol. Cell Biol. 2:1388-1398.
    Jacq, C., J. R. Miller and G. G. Brownlee, 1977. A pseudogene structure in 5S DNA of Xenopus laevis. Cell. 12:109-20.
    Jinn, T. L., Y. M. Chen and C. Y. Lin, 1995. Characterization and physiological function of class I low-molecular-mass, heat-shock protein complex in soybean. Plant Physio.. 108:693-701.
    Jinn, T. L., P. F. L. Chang, Y. M. Chen, J. L. Key and C. Y. Lin, 1997. Tissue-type-specific heat-shock response and immunolocalization of class I low-molecular-weight heat-shock proteins in soybean. Plant Physiol. 114:429-438.
    Judd, W. S., C. S. Campbell, E. A. Kellogg, P. S. Stevens and M. J. Donoghue, 2002. Plant Systematics: A Phylogenetic Approach, Second Edition, Sinauer Associates, Inc. 480-187.
    Kappacut, G., P. Verschuure, R. L. A. Philipsen, A. A. Staalduinen, P. V. de Boogaart, W. C. Boelens and W. W. de Jong, 2001. Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9. Biochim. Biophys. Acta 1520:1-6.
    Katiyar-Agarwal, S., M. Agarwal and A. Grover, 2003. Heat-tolerant basmati rice engineered by over-expression of hsp101. Plant Mol. Biol. 51:677-686.
    Kim, K. K., R. Kim and S. H. Kim, 1998. Crystal structure of a small heat-shock protein. Nature. 394:595-599.
    Kimura, M., 1983. The neutral theory of molecular evolution. Cambridge,
    Cambridge university Press.
    Kimura, P. S., K. Tamura, and M. Nei, 2001. MEGA2: Molecular Evolutionary Genetics Analysis Software, Bioinformatics.
    Kuo, H. F., Y. F. Tsai, L. S. Young and C. Y. Lin, 2000. Ethanol treatment triggers a heat shock-like response but no thermotolerance in soybean (Glycine max cv. Kaohsiung No.8) seedlings. Plant Cell Environment. 23:1099-1108.
    Laksanalamai, P. and F. T. Robb, 2004. Small heat shock proteins from extremophiles: a review. Extremophiles. 8:1-11.
    Lavoie, J. N., G. Gingras-Breton, R. M. Tanguay and J. Landry, 1993. Induction of Chinese hamster HSP27 gene expression in mouse cells confers resistance to heat shock. HSP27 stabilization of the microfilament organization. The Journal of Biological Chemistry. 268:3420-3429.
    Lee, G. J. and E. Vierling, 2000. A small heat shock protein cooperates with heat
    shock protein 70 systems to reactivate a heat-denatured protein. Plant
    Physiology. 122:189-197.
    Lee, Y. H., T. Ota and V. D. Vacquier, 1995. Positive selection is a general phenomenon in the evolution of abalone sperm lysine. Molecular Biology and Evolution. 12:231-238.
    Levitt, J., 1980. Responses of plants to environmental stresses. Vol. a Chilling, freezing, and high temperature stresses. Academic press New York.
    Li, W. H., 1997. Molecular Evolution. Sinauer, Sunderland, MA.
    Lin, C. Y., J. K. Roberts and J. L. Key, 1984. Acquisition of thermotolerance in
    soybean seedlings. Plant Physiol.. 74:152-160.
    Lindquist, S., 1986. The heat-shock response. Annual Review of Biochemistry.
    55:1151-1191.
    Lindquist, S. and E. A. Craig, 1988. The heat-shock proteins. Annual Review of
    Genetics. 22:631-677.
    Liu, X. and B. Huang , 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentarass. Published in Crop Sci. 40:503-510.
    Lw, D., K. Brndle, L. Nover, C. Forreiter, 2000. Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17.3 class II of tomato act as molecular chaperones in vivo. Planta. 211:575-582.
    Lubaretz, O. and U. zur Nieden, 2002. Accumulation of plant small heat-stress proteins in storage organs. Planta. 215:220-228.
    Maestri, E., N. Klueva, C. Perrotta, M. Gulli, H. T. Nguyen and N. Marmiroli. 2002. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Molecular Biology. 48:667-681.
    Malik, M. K., J. P. Slovin, C. H. Hwang and J. L. Zimmerman, 1999. Modified expression of a carrot small heat shock protein gene, Hsp17.7, results in increased or decreased thermotolerance. Plant Journal. 20:89-99.
    Martin, W. and C. Schnarrenberger, 1997. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: A case study of functional redundancy in ancient pathways through endosymbiosis. Curr. Genet. 32:1-18.
    Morrow, G., Y. Inaguma, K. Kato and R. M. Tanguay, 2000. The small heat shock protein Hsp22 of Drosophila melanogaster is a mitochondrial protein displaying oligomeric organization. J. Biol. Chem. 275:31204-10.
    Morimoto, R. T., A.Tissires and C. Georgopoulos, 1991. Stress protein in Biology and Medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
    Narberhaus, F., 2002. α-Crystallin-type heat shock proteins: Socializing minichaperones in the context of a multichaperone network. Microbiol and Mol Biol. Rev. 66:64-93.
    Netzer, W. J. and F. U. Hartl, 1998. Protein folding in the cytosol: chaperonin-dependent and –independent mechanisms. TIBS. 23:68-73.
    Nover, L., K. D. Scharf and D. Neumann, 1983. Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell. Biol. 3:1648-1655.
    Nover, L., K. D. Scharf and D. Neumann, 1989. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol. Cell. Biol. 9:1298-1308.
    Parsell, D. A. and S. Lindquist, 1994. Heat shock proteins and stress tolerance. In R. I. Morimoto, A. Tissires, and C. Georgopoulos [eds.], The biology of heat shock proteins and molecular chaperones, 457–494. Cold Spring Harbor Laboratory Press, New York, New York, USA.
    Pelham, H. R., 1982. A regulatory upstream promoter element in the Drosophila Hsp70 heat-shock gene. Cell. 30:571-528.
    Pla, M., A. Jofre, M. Martell, M. Molinas and J. Gomez, 2000. Large accumulation of mRNA and DNA point modifications in a plant senescent tissue. FEBS Letters. 472:14-16.
    Plesofsky-Vig, N., J. Vig and R. Brambl, 1992. Phylogeny of the α-crystallin-related heat-shock proteins. Journal of Molecular Evolution. 35:537-545.
    Prndl, R and F. Schffl, 1996. Heat shock elements are involved in heat shock promoter activation during tobacco seed maturation. Plant Mol Biol. 31: 157–162.
    Queitsch, C, S. K. Hong, E. Vierling and S. Lindquist, 2000. Heat shock protein 101 plays a crucial role in thermotolerance in Arabidopsis. Plant Cell. 12:479-492.
    Ritossa, F., 1962. A new puffing pattern induced by temperature shock and DEP in Drosophila. Experoentia. 18:571-573.
    Rozas, J., J. C. Sanchez-DelBarrio, X. Messeguer and R. Rozas. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioingormatic s. 19:2496-2497.
    Srensen, J.G., P. Michalak, J. Justesen and V. Loeschcke, 1999. Expression of the heat-shock protein HSP70 in Drosophila buzzatii lines selected for thermal resistance. Hereditas. 131:155–164.
    Srensen, J.G. and V. Loeschcke, 2002. Natural adaptation to environmental stress via physiological clock-regulation of stress resistance in Drosophila. Ecol. Lett. 5:16–19.
    Srensen, J. G., T. N. Kristensen and V. Loeschcke, 2003. The evolutionary and ecological role of heat shock proteins. Ecology Letters. 6:1025-1037.
    Sabehat, A., S. Lurie and D. Weiss, 1998. Expression of small heat-shock proteins at lowtemperatures. Plant Physiol.. 117:651-658.
    Sanger, F., S. Nicklen and A. R. Coulson, 1977. DNA sequencing with
    chain-terminating inhobitors. Proceedings of National Academia Sciences,
    74: 5463-5467.
    Scharf, K. D., M. Siddique and E. Vierling, 2001. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containg –crystallin domains (Acd proteins). Cell Stress and Chaperones. 6:225-237.
    Schffl, F., E. Raschke and R. T. Nagao, 1984. The DNA sequence analysis of soybean heat-shock genes and identification of possible regulatory promoter elements. The EMBO Journal. 3:2491-2497.
    Schlesinger, M. J., 1990. Heat shock proteins. J. Biol. Chem. 265:12111-12114.
    Southgate, R., A. Ayme and R. Voellmy, 1983. Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. Journal of Molecular Biology. 165:35-57.
    Sun, W., M. V. Montagu and N. Verbruggen, 2002. Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta. 1577:1-9.
    Taylor, W. S. 1986. The classification of amino acid conservation. Journal of Theoretical Biology. 119:205-218.
    Templeton, A. R., E. Routman and C. A. Phillips, 1995. Separating population structure from population history: a cladistic analysis the geographical distribution of mitochondrial DNA haplotypes int tiger sapamander, Ambystoma tigrinum. Genetics. 140:767-782.
    Tissieres, A., H. K. Mitchell and U. M. Tracy, 1974. Protein synthesis in salivary glands of Drosophila melanogster: relation to chromosome puffs. J. Mol. Biol. 84:389-398.
    Tzeng, S. S., Y. M. Chen and C. Y. Lin, 1993. Isolation and characterization of genes encoding 16.9 kDa heat shock proteins in Oryza sativa. Bot. Bull. Acad. Sin. 34:133-142.
    Vierling, E., 1991. The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology. 42:579-620.
    van Montfort, R. L. M., E. Basha, K. L. Friedrich, C. Slingsby and E. Vierling, 2001. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat Struct Biol. 8:1025-1030.
    Waters, E. R., 1995. The molecular evolution of the small heat-shock proteins in plants. Genetics. 141:785-795.
    Waters, E. R., G. J. Lee and E. Vierling, 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Biol. 47:1-14.
    Waters, E. R. and E. Vierling, 1999a. Chloroplast small heat shock proteins: Evidence for atypical evolution of an organelle-localized protein. PNAS. 96:14394-14399.
    Waters, E. R. and E. Vierling, 1999b. The diversification of plant cytosolic small heat shock proteins preceded the divergence of mosses. Molecular Biology of Evolution. 16:127-139.
    Watternson, G. A.,1975. On the number of segregating sites in genetical models without recombination. Theor. Pop. Biol. 7:256-276.
    Weenden, N. F., 1981. Genetic and biochemical implications of the endosymbiotic origin of the chloroplast. J. Mol. Evol. 17:133-139.
    Wehmeyer, N., L. D. Hernandez, R. R. Finkelstein and E. Vierling, 1996. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol.. 112:747-757.
    Wehmeyer, N. and E. Vierling, 2000. The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests a general protective role in desiccation tolerance. Plant Physiol.. 122:1099-1108.
    Welch, W. J. and J. P. Suhan, 1986. Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J. Cell Biol 103: 2035-2052.
    Wright, S., 1943. Isolation by distance. Genetics. 28:114-138.
    Wilson, R.S. and C. E. Franklin, 2002. Testing the beneficial acclimation hypothesis. Trends Ecol. Evol. 17: 66-70.
    Wu, W. L., B. A. Schaal, C. Y. Hwang, M. D. Hwang, Y. C. Chiang and T. Y. Chiang, 2003. Characterization and adaptive evolution of α-tubulin genes in the Miscanthus sinensis complex (Poaceae). Am. J. Bot. 90:1513-1521.
    Yang, Z., 1997. PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences. 13:555-556.
    Yoshida, K., N. T. Miyashita and T. Ishii, 2004. Nucleotide polymorphism in
    the Adh1 locus region of the wild rice Oryza rufipogon. Theoretical and Applied Genetics. 109:1406-1416.
    Yeh, C. H., P. F. L. Chang, K. W. Yeh and C. Y. Lin, 1997. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp 16.9, in Escherichia coli enhances thermotolerance. Proc Natl Acad Sci USA. 94:10967-10972.
    Yost, H. J., R. B. Petersen and S. Lindquist, 1990. RNA metabolism: strategies for regulation in the heat shock response. TIG. 6:223-227.
    Yang, J. and D. B. DeFranco, 1996. Assessment of glucocorticoid receptor-heat shock protein 90 interactions in vivo during nucleocytoplasmic trafficking. Mol. Endocrinol. 10:3-13.
    Young, L. S., C. H. Yeh, Y. M. Chen and C. Y. Lin, 1999. Molecular characterization of Oryza sativa 16.9 kDa heat shock protein. Biochemical Journal. 94:10967-10972.
    Zhang, J., 2000. Rates of conservative and radical nonsynonymous nucleotide suvstitutions in mammalian nuclear genes. Journal of Molecular Evolution. 50:56-68.
    Zuckerkandl, E. and L. Pouling, 1965. Evolutionary divergence and convergence in protein. In Evolving genes and protein. Edited by Bryson, V. and H. J. Vogel, Academic Press, New York.

    下載圖示 校內:2009-07-18公開
    校外:2015-07-18公開
    QR CODE