| 研究生: |
鄭淵仁 Jheng, Yuan-ren |
|---|---|
| 論文名稱: |
二維表面週期形貌之應力集中效應分析 Analysis on the Stress Concentration Effects of Two-dimensional Periodic Surface Feature |
| 指導教授: |
林育芸
Lin, Yu-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 應力強度因子 、應力放大倍率 、表面週期形貌 |
| 外文關鍵詞: | Periodic surface feature, Stress concentration, Stress intensity factor |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由實驗得知,利用蝕刻技術在材料表面製造出表面週期形貌可以提升材料機械性質。本文主要目的在於探討材料具有表面週期形貌下對於材料的應力場行為之影響。利用有限元素套裝軟體ABAQUS,建立二維具有表面週期形貌之模型,探討具有週期形貌下凹口尖端的應力集中效應與週期形貌下凹口尖端具有不同裂縫長度之應力強度因子。由數值分析得知,應力放大倍率與應力強度因子皆受到表面週期形貌幾何參數改變而有所影響。
Periodic surface feature, which were fabricated by etching techniques, can improve mechanical properties of materials from experimental observation. The main purpose of this research is to explore the influence of periodic surface feature to stress field of materials. Two-dimensional finite element models of periodic surface feature were built using ABAQUS to study the stress concentration at the notch tip, and the stress intensity factor near the crack tip for different crack growth from the notches of periodic surface feature. From numerical results, it is found that the stress concentration and stress intensity factor were affected by the change of geometric parameters of periodic surface feature.
[1]陳其男,”仿高砂熊蟬的翅膀奈米結構提升單晶矽的機械韌性”,國立清華大學電子工程研究所,博士論文(2008)
[2]M.L. Williams, Pasadena, Calif, Stress Singularities resulting from various boundary conditions in angular corners of plates in extension.Journal of Applied Mechanics (1952)
[3]A.K. Mal, S.J. Singh, Deformation of Elastic Solids, Prentice Hall (1991)
[4]N.I. Muskhelishvili, “Some Basic Problems of Mathematical Theory of Elasticity”, Noordhoff, (1953)
[5]O.L. Bowie, “Edge notches in a semi-infinite region”, Journal of Mathematics and Physics, Vol 44, pp.356-366(1966)
[6]G.C. Sih, Stress Analysis of Notch Problems ,Mechanics of Fracture, Vol 5, (1978)
[7]ABAQUS 6.8 User’s Manual
[8]H. Tada, P.C. Paris, G.R Irwin, The Stress Analysis of Cracks Handbook, ASME Press, New York, (2000)
[9]J.P. Benthem , and W.T. Koiter , “Asymptotic approximations to crack problems”. Methods of Analysis and Solutions of crack Problems, Mechanics of Fracture, Vol 1, (1973)
[10]G.C. Sih, Stress Analysis of Notch Problems ,Mechanics of Fracture, Vol 5, (1978)
[11]T. L. Anderson, Fracture Mechanic: Fundamentals and Applications