| 研究生: |
黃子瑋 Huang, Tzu-Wei |
|---|---|
| 論文名稱: |
鈣鈦礦型La1-xKxCo1-xNbxO3之介電特性研究 The Dielectric Properties of Perovskite Oxide of La1-xKxCo1-xNbxO3 System |
| 指導教授: |
張炎輝
Chang, Yen-Hwei |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 結晶活化能 、鈣鈦礦 、介電特性 |
| 外文關鍵詞: | delectric properties, activation energy of crystallization, perovskite |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以鈣鈦礦結構(ABO3)之鑭系氧化物LaCoO3為基材,添加KNbO3,以固態反應法(Solid State Reaction)備製La1-xKxCo1-xNbxO3(x=0~1)陶瓷粉末,以期在鑭位置以鹼金族的鉀取代,在鈷位置則以過渡金屬元素的鈮取代,探討鉀及鈮對LaCoO3鈣鈦礦結構、微結構及電性之影響,藉由不同添加量x及不同燒結條件的控制,探討陶瓷體之介電性質。
本實驗結果顯示,成功的以兩階段固態反應法合成La1-xKxCo1-xNbxO3之複合型鐵電陶瓷系統。在1400 ℃燒結2小時後所有試片皆形成單一之鈣鈦礦結構;在添加量為0.1 < x時,其結構為菱方晶體(rhombohedral);當添加量在0.1 ≦ x ≦ 0.7的範圍裡,則轉變為立方晶體(cubic);最後當添加量為0.7 < x,則轉變為斜方晶體(orthorhombic)。在熱差-熱重分析發現x = 0.1與0.3的結晶活化能分別為121.75、116.82 kJ/mol,而x = 0.5和0.7的結晶活化能分別為111.89、106.96 kJ/mol。利用Rietveld法精算x = 0.1之XRD所得之結果顯示,精算wRp、Rp、X2值分別為0.0345、0.0277、1.28,為相當良好的精算結果,其化學方程式為:La0.91K0.09Co0.89Nb0.11O3.12,此成份的比例與我們所設定的化學方程式La1-xKxCo1-xNbxO3非常一致,這代表了絕大部分的K、Nb、La與Co離子,分別以一價、五價和三價的狀態存在於本系統內,本實驗所合成之La1-xKxCo1-xNbxO3陶瓷結構屬於立方晶系(cubic),空間群為 ,其中a = 3.88 Å α = 90°。由TEM觀察分析得到,當添加量x = 0.1時,晶格常數a = 3.89 Å,同時在沿著[001]方位的擇區繞射圖中也鑑定出了,(100)平面的超晶格結構(superlattice structure),另外在沿著[011]和[ ] 方位的擇區繞射中,也分別發現了( ) 和 ( )平面的超晶格結構。
La1-xKxCo1-xNbxO3弛緩體鐵電陶瓷是由半導化的晶粒與高電阻晶界所組成的晶界層電容,在室溫下,x = 0.1之樣品經過1400 oC燒結2小時,可獲得約58000之介電常數( )而介電損失(tanδ)約0.8。根據Arrhenius方程式所得之La1-xKxCo1-xNbxO3弛緩體鐵電陶瓷在介電弛緩過程所需的活化能約為5.88 kJ/mol,而偶極弛緩時間約10-3s。由XPS分析結果可以發現,在La1-xKxCo1-xNbxO3的系統裡,La離子是以三價的狀態來存在;當添加量x = 0.1時,Co是以三價陽離子狀態存在;為了形成ABO3結構,一價的K離子僅取代A位置的三價La離子;Nb離子在此系統裡只以五價陽離子狀態存在。
In this study, lanthanide oxides LaCoO3 with perovskite structure (ABO3) is used as the substrate and KNbO3 is added to prepare La1-xKxCo1-xNbxO3 (x = 0 to 1) ceramic powder by solid state reaction with a view to replace La with K and Co with Nb to study the effect of K and Nb on microstructure and electrical properties of LaCoO3 perovskite structure. Meanwhile, through different content of x and sintering conditions, ceramic dielectric properties are studied as well.
The results show the success of synthesizing ferroelectric ceramic composite system La1-xKxCo1-xNbxO3 with two-stage solid-state reaction. All the specimens form a single perovskite structure after two hours of sintering at 1400 °C. When adding amount is less than 0.1 (0.1 < x), the crystal structure is rhombohedral. When adding amount is between 0.1 and 0.7 (0.1 ≦ x ≦ 0.7 ) the crystal structure transforms into cubic. When adding amount is greater than 0.7 (0.7 < x), the crystal structure transforms into the orthorhombic. By DSC analysis, the activation energy of crystallization of the powders with x = 0.1 and 0.3 are 121.75 and 116.82 kJ/mol respectively, x = 0.5 and 0.7 are 111.89 and 106.96 kJ/mol respectively. The calculation result of XRD when x = 1 using Rietveld method shows the values of wRp, Rp and X2 are 0.0345, 0.0277, and 1.28 respectively, and its chemical formula: La0.91K0.09Co0.89Nb0.11O3.12 is consistent to the formula La1-xKxCo1-xNbxO3 that we have set, which represents most of the K, Nb, La and Co ions exist in the state of monovalent, quinquevalent, and trivalent respectively in this system. The space group of La1-xKxCo1-xNbxO3 synthesized in this experiment whose ceramic structure is cubic is , in which a = 3.88 Å α = 90°. Observed in TEM analysis, when adding amount x = 0.1, the lattice constant a = 3.89 Å. Meanwhile, in the selected-area-diffraction (SAD) patterns along [001] direction, the super-lattice structure of (100) plane is identified, and in SAD patterns along the [011] and [ ] direction, super-lattice structures of ( ) and ( ) plane are also discovered.
La1-xKxCo1-xNbxO3 flaccid ferroelectric ceramics is the grain boundary layer capacitance composed of semi-conductive process gains and high-resistance grain boundaries , at room temperature, x = 0.1 sample sintered at 1400°C for two hours will have the dielectric constant (E) of approximately 58,000 and dielectric loss (tan δ) of approximately 0.8. Based on the Arrhenius equation, The activation energy of the dielectric relaxation is estimated to be 5.88 kJ/mol and the lattice vibrational phonon frequency τ0 is 1.881 × 10-3 s. From XPS analysis results, La exists in the state of trivalent ions in La1-xKxCo1-xNbxO3 system. When the adding amount x = 0.1, Co exists in the state of trivalent cation. In order to form an ABO3 structure, K+ only replaces the La3+ in A position; Nb exists only in the state of quinquevalent in the system.
[1] 林世欽,”陶瓷晶片電容性質介紹及在電源模組上之應用”,工業材料雜誌,178期 (2001) 93
[2] 薛立人,”超高電容器的應用深遠弘廣”,工業材料雜誌,128期 (1997) 133
[3] 黃瑞雄、顏溪成,”漫談電化學”,科學發展雜誌,395期 (2002) 27
[4] G.A. Somlenskii and V.A. Ispov, Dolk. Akad. Nauk SSSR 9, (1954) 653
[5] 吳朗,”電子陶瓷(介電陶瓷)”,全欣出版社 (1994) 19
[6] D. A. G. Bruggeman, “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen”, Ann. Phys. (Paris) 416, (1935) 636
[7] W. R. Buessen, L.E. Cross, and A.K. Goswami, “Phenomenological Theory of High Permittivity in Fine-Grained Barium Titanate”, J. Am. Ceram. Soc. 49, (1966) 33
[8] M. M. Silvan, L. F. Cobas, R. J. Mattin-Palma, M. H. Velez and J. M. Martinez., ”BaTiO3 thin film obtained by sol-gel spin coating”, Surface and Coatings Technology, 118 (2002) 151
[9] M. H. Frey and D.A. Payne, ”Grain-size effect on structure and phase transformations Barium Titanate”, Phys. Rev .B, 54 (1996) 3158
[10] B. Lee and J. Zhang, ”Preparation, structure evolution and dielectric properties of BaTiO3 thin films and powders by an aqueous sol-gel process”,Thin Solid Films, 388 (2001) 107
[11] F. D. Morrison, A. Coats, D. C. Sinclair and A. R. West, ”Charge compensation mechanisms in La-doped BaTiO3”, J. Electroceramics, 6 (2001) 219
[12] D. Li and M.A. Subramanian, ”Noval tunable ferroelectric compositions : Ba1-XLnXTi1-XMXO3 (Ln=La, Sm, Gd, Dy M=Al, Fe, Cr)”, Solid State Sci., 2 (2000) 507
[ 3] G. Li, Y. Uesu, and K. Kohn, ”Structural Characterization of the Complex Perovskites Ba1-XLaXTi1-XCrXO3”, J. Solid State Chem. 164, (2002) 98
[ 4] C. Ang, Z. Yu and Z. Jing, ”Impurity-induced ferroelectric relaxor behavior in quantum paraelectric SrTiO3 and ferroelectric BaTiO3”, Phys. Rev. B,61(2000) 957
[ 5] J. Nowotny and M. Rekas, ”Defect chemistry of BaTiO3”, Solid State Ionics, 49 (1991) 135
[ 6] Y. Li, X. Yao and L. Zhang, “Dielectric properties and microstructure of magnesium-doped Ba1+k(Ti1-XCaX)O3-X+k”, Ceramics International, 30 (2004) 1283
[17] C. M. Chui, Y. H. Chang, “Structure, electrical and sensing properties for CO of the La0.8Sr0.2Co1-xNixO3-δ system”, Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, v 266, n 1-2, Jun, (1999) 93
[18] B. Raveau , C. Martin, A. Maiqnan, “ What about the role of B elements in the CMR properties of ABO3 perovskites ” , J. Alloys Compd., 275, (1998) 461
[19] L. Kindermann, D. Das, H. Nickel, K. Hilpert, C. C. Apple, F. W. Poulson, “Chemical compatibility of (La0.6Ca0.4)xFe0.8M0.2O3 with yttria-stabilized zirconia”, Journal of the Electrochemical Society, v 144, n 2, Feb, (1997) 717
[20] J. M .Benedetto, M. L. Roush, I. K. Lloyd, R. Ramesh, “Imprint of ferroelectric PLZT thin-film capacitors with lanthanum strontium cobalt oxide electrodes”, IEEE International Symposium on Applications of Ferroelectrics, 66
[21] B. F. Jona and G. Shirane, Ferroelectric Crystals (Dover, New York, 1993), p.221
[22] P. Dubernet and J. Ravez, Ferroelectrics 211 (1998) 51
[23] D. Xue and S. Zhang, Chem. Phys. Lett. 291 (1998) 401
[24] M. Wells and H. D. Megaw, Proc. Phys. Soc. (Lond.) 78 (1961) 1258
[25] L. E. Cross and B. J. Nicholson, Phil. Mag. 46 (1955) 453
[26] H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., Part 1 36, (1997) 6055; 37, (1998) 5311
[27] 吳朗,”電子陶瓷入門”, chap2, (1992) 15
[28] F. Donald Bloss, Crystallography and Crystal Chemistry, An Introduction﹐ Holt Rinehart and Winston﹐Inc.﹐New York﹐1971, 253
[29] James J. Burton and Robert L. Garten, “Advanced Materials in Catalysis”, (Academic Press, New York, 1997) 130
[30] J. B. Goodenough, and J. M. Longs, “Landolt-Bornstein New Series”, Vol.4, part a, Springer-vorlag, Berlin, (1970) 126
[31] N. Setter and L. E. Cross, “The contribution of structure disorder to diffuse transition in Ferroelectrics”, J. Mater. Sci., 15 (1980) 2478
[32] P. Woodward, R. D. Hoffmann and A. W. Sleight, “Order-Disorder in A2M3+M5+O6”, J. Mater. Res., 9 (1994) 2118
[33] F. S. Galass, “Structure Properties and Preparation of Perovskite-type Compound”, Pergamon press, New York (1969)
[34] A. Amin, R. E. newnham, L.E. Cross and S. Nomura, “ Ordering in Pb(Mg1/2 Nb2/3)O3-Pb(Mg1/2W1/2)O3”, J. Solid State Chem., 35 (1990) 267
[35] F. Galasso and W. Darby, S. Phys. Chem. 66 (1962) 131
[36] I. T. Kim, K. S. Hong, and S. J.Yoon, “Effects of non-stoichiometry and chemical inhomogeneity on the order–disorder phase formation in the complex perovskite compounds Ba(Ni1/3Nb2/3)O3 and Ba(Zn1/3Nb2/3)O3”, J. Mater. Sci., 30 (1995) 514
[37] A. Chelkowski, “Dielectric Physics”, Silesian University Katowice, Poland (1979) 5
[38] K. Uchino, “Ferroelectric device”, Marcel dekker, Inc., New York (2000)
[39] N. Setter and E. L. Colla, ”Ferroelectric Ceramic”, Birkhauser Verlag Basel, (1993) 213
[40] D.Liu, H. Zhang, W. Cai, X. Wu and L. Zhao, ”Synthesis of PZT nanocrystall- ine powder by a modified sol-gel process using circonium oxynitrate as zirconium source”, Mater. Chem. Phys., 51 (1997) 186
[41] G. L. Rhun, R. Bouregba and G. Poullain,”Polarization loop deformations of an oxygen deficient Pb(Zr0.25Ti0.75)O3 ferroelectric thin film”, J. Appl. Phys., 96 (2004) 5712
[42] R.Dat, J. K. Lee, O. Auciello and A.I. Kingon, “Pulsed laser ablation synthesis and characterization of layered Pt / SrBi2Ta2O9 / Pt ferroelectric capactors with practically no polarization fatigue”, Appl. Phys. Lett. 67 (1995) 572
[43] T. Li, Y. Zhu, S. B. Desu, C. H. Peng, M. Nagata, “Metalorganic chemical vapor deposition of ferroelectric SrBi2Ta2O9 thin films”, Appl. Phys. Lett. 68 (1996) 616
[44] M. S. Tomar, R. E. Melgarejo, and A. Hidalgo, “Structural and ferroelectric studies of Bi3.44La0.56Ti3O12 films”, Appl. Phys. Lett., 83 (2003) 341
[45] Y. M. Sun, Y. C. Chen, J. Y. Gan, and J. C. Hwang, “Ferroelectric properties of (117) - and (001) – oriented Bi3.25La0.75Ti3O12 polycrystalline thin films”, Appl. Phys. Lett., 81 (2002) 3221
[46] L.E. Cross,”Relaxor Ferroelectric“, Ferroelectric, 76 (1987) 241
[47] Y. C. Liou,”Effect of heating rate on properties of Pb(Mg1/3Nb2/3)O3 ceramics produced by the reaction sintering process”, Mater. Lett. 58 (2004) 944
[48] W. Z. Zhu, A. Kholkin, P.Q. Mantas and J. L. Baptista, ”Effect of lanthanum- doping on the dielectric and piezoelectric properties of PZN-base MPB composition”, J. Mater. Sci., 36 (2001) 4089
[49] V. A. Bokov and I. E. Mly, “Electric and Optical Properties of Single Crystal of Ferroelectric with a Diffuse Phase Transition”, Sov. Phys. Solid State, 3 [3], (1961) 613
[50] R. M. Glaister, ”Barrier-Layer Dielectric”, Proc. Int. Conf. Components and Mats. Elec. Eng. IEE. Paper 3634 (1961) 1
[51] F. Greuter and G. Blatter, ”Electric Properties of Grain Boundaries in Polycrystalline Compound Semiconductors”, Semicond. Sci. Technol. 5 (1990) 37
[52] D. Vladikova, “The Technique of the Differential Impedance Analysis Part I : Basics of the Impedance Spectroscopy”, Adv. Tech. Energy Sources Invest. and Test. , 2-4 (2004) L8-1
[53] H.E. Kissinger,”Varation of peak temperature with heating rate in different thermal analysis”, J. Res. National Bureau Stand., 57 (1956) 217
[54] H.E. Kissinger,”Reaction kinetics in different thermal analysis”, Analysis Chem., 29 (1957) 1702
[55] K. Kitayama, “Thermogravimetric Study of Ln2O3-Co-Co2O3 System”, J. Solid State Chem. 73 (1987) 381
[56] O. Parkash, R. Kumar, D. Kumar and D. Bahadur, ”Preparation and Structure of the System La1-xNaxCo1-x-NbxO3 (0.01<x<0.99)”, J. Mater. Sci. Lett. 7 (1998) 383
[57] O. Parkash, D. Kumar and R. Kumar, ”Electrical Conduction in the Solid Solution La1-xNaxCo1-xNbxO3 (0.01<x<0.99)”, Bull. Mater. Sci. Vol. 10, No. 3 (1988) 245
[58] O. Parkash, D. Kumar and R. Kumar, “Studies on Spin State Equilibrium of Cobalt Ions in the System Lal-xNaxCol-xNbxO3 (x< 0.40) Using Magnetic Susceptibility Measurements”, Bull. Mater. Sci. Vol. 12, No. 2 (1989) 55
[59] O. Parkash, D. Kumar and R. Kumar, ”Preparation and Structure of Na1-xLaxNbl-2x/3Co2x/3O3 with x= 0.4275, 0.435, 0.50 and 0.51”, J. Mater. Sci. Lett. 16 (1997) 971
[60] G.V. Lewis and C.R.A. Catlow, “Potential models for ionic oxides”, J. Phys. C: Solid State Phys., 18 (1985) 1149
[61] Macchi, C., Somoza, A., Dupasquier, A., Lopez,, A. Castro and M. Castro,” Positron trapping in BaTiO3 perovskite”, J. Phy: Condens.Matter 13 (2001) 5717
[62] M. Mohsen, R. K. Rehberg, A. M. Massoud and H. T. Langhammer,”Donor- doping effect in BaTiO3 ceramic using positron annihilation spectroscopy”, Radiation Phys.Chem. 68 (2003) 549
[63] J. Ravez and C. R. Acad., “Ferroelectricity in solid state chemistry”, Sci. (Paris) Ser. II c Chim. 3 (2000) 267
[64] A. Reisman, F. Holtzberg, “Phase Equilibria in the System K2CO3-Nb2O5 by the Method of Differential Thermal Analysis”, J. Am. Chem. Soc., 77 (1955)2117
[65] K. Lichtenecker,”Dielectric Constant of Natural and Synthetic Mixtures”, Phys. Z., 27 (1926) p.115
[66] M. W. Barsoum. ”Fundamentals of ceramic”, The McGraw-Hill Companies, New York (1997) p.331
[67] M. Mohsen, R. K. Rehberg, A. M. Massoud and H. T. Langhammer , ”Donor- doping effect in BaTiO3 ceramic using positron annihilation spectroscopy”, Radiation Phys. Chem. 68 (2003) 549
[68] A. M. Glazer, “Simple Ways of Determining Perovkite Structures”, Acta Crystal., A31 (1975) 756
[69] D. Hennings and H. Pomplun, ”Evaluation of Lattice Site and Valence of Mn and Fe in Polycrystalline PbTiO3 by Electron Spin Resonance and Thermogravimetry”, J. Amer. Ceram. Soc., 57 (1974) 527
[70] M.D. Glinchuk, et.al., “Valency States and Distribution of Manganese Ions in PZT Ceramics Simultaneously Doped with Mn and Nb”, Phys. Stat Sol.(a) 122 (1990) 341
[71] M. Wells and H. D. Megaw, “The Structures of NaNbO3 and Na0.975K0.025NbO3
”, Proc. Phys. Soc. (Lond.) 78 (1961)1258
[72] L. E. Cross and B. J. Nicholson, “The optical and electrical properties of single crystals of sodium niobate”, Phil. Mag. 46 (1955)453
[73] S. L. Swartz, T. R. Shrout, W.A. Schulze and L.E. Cross,”Dielectric Properties of Lead-Magnesium Niobate Ceramic”, J. Am. Ceram. Soc., 67 (1984) 311
[74] B. Angadi, V. M. Jali, M. T. Lagare, V. V. Bhat, A. M. Umarji and R. Kumar, “Radiation resistance of PFN and PMN-PT relaxor ferroelectrics”, Radia. Measure. , 36 (2003) 635
[75] L. Zhou, P. M. Vilarinho, P. Q. Mantas, J. L. Baptista and E. Fotunato, “The effects of La on the dielectric properties of lead iron tungstate Pb(Fe2/3W1/3)O3 relaxor ceramics”, J. Euro. Ceram. Soc., 20 (2000) 1035
[76] Y. Park, “Low-frequency-dispersion of Pb(Fe1/2Nb1/2)O3 single crystal in the region of its paraelectric ferroelectric phase transition”, Solid State Commun., 113 (2000) 379
[77] R. K. Dwivedi, D. Kumar and O. Parlash, “Valence compensated perovskite oxide system Ca1-xLaxTi1-xCrxO3”, J. Mater. Sci., 36 (2001) 3649
[78] R. Moos and K. H. Härdtl, “Defect Chemistry of Donotr-Doped and Undoped Strontium Titanate Ceramics between 1000° and 1400 0C”, J. Am. Ceram. Soc., 80 (1997) 2549
[79] F. D. Morrison, D. C. Sinclair and A. R. West, “Doping mechanisms and electrical properries of La-doped BaTiO3 ceramics”, International J. of Inorganic Mater., 3 (2001) 1205
[80] I. P. Raevski, S. A. Prosandeev, A. S. Bogatin, M. A. Malitskaya and L. Jastrabik, “High dielectric permittivity in AFe1/2B1/2O3 nonferroelectric perovskite ceramics (A=Ba, Sr, Ca; B=Nb, Ta, Sb)”, J. Appl. Phys., 93 (2003) 4130
[81] M. A. Subramanian, D. Li, N. Duan, B. A. Reisner and A. W. Sleight, “High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases”, J. Solid State Chem., 151 (2000) 323
[82] R. K. Dwivedi, D. Kumar and O. Parkash, “Valence compensated perovskite oxide system Ca1-xLaxTi1-xCrxO3”, J. Mater. Sci., 36 (2001) 3641
[83] W.-H. Jung, J.-H. Lee, J.-H. Sohn, H.-D. Nam and S.-H. Cho, “Dielectric loss anomayly in Ba(Fe1/2Ta1/2)O3 ceramics”, Mater. Lett., 56 (2002) 334
[84] S. Saha and T. P. Sinha, “Low-temperature scaling behavior of BaFe0.5 Nb0.5O3”, Phys. Rev. B , 65 (2002) 134103
[85] W. H. Jung and E. Iguchi, “Transition from hopping conduction to band conduction in LaxFexNi1-xO3”, Philosophical Magazine B, 73 (1996) 873
[86] E. Iguchi, N. Kubota, T. Nakamori, N. Yamamoto and K. J. Lee, “Polaronic conduction in n–type BaTiO3 doped with La2O3 or Gd2O3”, Phys. Rev. B, 43 (1991) 8646
[87] K. S. Cole and R. H. Cole,” Dispersion and Absorption in Dielectric“, J. Chem. Phys. 9 (1941) 341
[88] P. Q. Mantas, “Dielectric Response of Materials Extension to the Debye Model”, J. Euro. Ceram. Soc., 19 (1999) 2079
[89] A. K. Jonscher, “Dielectric relaxation in Solids”, Chelsea Dielectrics Press Limited, London (1983) p.76
[90] A. R. West, T. B. Adams, F. D. Morrison and D. C. Sinclair, “Novel high capacitance materials:- BaTiO3:La and CaCu3Ti4O12”, J. Euro. Ceram. Soc., 24 (2004) 1439
[91] N. Yamaoka,”SrTiO3-Base Boundary Layer Capacitors”, Am. Ceram. Soc. Bull., 65 (1986) 1149
[92] M. Yokosuka, “Dielectric Dispersion of the Complex Perovskite Oxide Ba(Fe1/2Nb1/2)O3 at Low Frequencies”, Jpn. J. Appl. Phys., 34 (1995) 5338
[93] J. Fleig and J. Maier, “Finite-Element Calculations on the Impedance of Electroceramics with Highly Resistive Grain Boundaries: l, Laterally Inhomogeneous Grain Boundaries”, J. Am. Ceram. Soc., 82 (1999) 3485
[94] Y. Wu, T. Yu, B.S. Dou, C.X. Wang, X.F. Xie, Z.L. Yu, S.R. Fan, Z.R. Fan, L.C. Wang, “A comparative study on perovskite-type mixed oxide catalysts A′xA1 − xBO3 − λ (A′ = Ca, Sr, A = La, B = Mn, Fe, Co) for NH3 oxidation”, J. Catal. 120 (1989) 88
[95] K. Ichimura, Y. Inoue, I. Yasumori, “Catalysis by Mixed Oxide Perovskites. I. Hydrogenolysis of Ethylene and Ethane on LaCoO3”, Bull. Chem. Soc., Jpn. 53 (1980) 3044
[96] K. Ichimura, Y. Inoue, I. Yasumori, “Catalysis by Mixed Oxide Perovskites. II. The Hydrogenolysis of C3–C5 Hydrocarbons on LaCoO3”, Bull. Chem. Soc., Jpn. 54 (1981) 1787
[97] N. Yamazoe, Y. Teraoka, T. Seiyama, ”Reduction-Oxidation Mechanism of Oxide Ctalysts. Oxygen Dffusion During Redox Cycles”, Chem. Lett. (1979) 273
[98] L.G. Tejuca, A.T. Bell, “Surface behaviour of reduced LaCoO3 as studied by TPD of CO, CO2 and H2 probes and by XPS”, Appl. Surf. Sci. 31 (1988) 301
[99] J.A. Marcos, R.H. Butrago, E.A. Lombardo, “Surface chemistry and catalytic activity of La1 − yMyCoO3 perovskite (M = Sr or Th): 1. Bulk and surface reduction studies”, J. Catal. 105 (1987) 95
[100] C.M. Pradier, C. Hinnen, ”Structural and surface characterization of perovskite-type oxides; influence of A and B substitutions upon oxygen binding energy”, J. Mater. Sci. 33 (1998) 3187
[101] K. Tabata, Y. Hirano, E. Suzuki, “XPS studies on the oxygen species of LaMn1−xCuxO3+λ”, Appl. Catal. A 170 (1998) 245
[102] M. W. Roberts, “Chemisorption and reaction pathways at metal surfaces: the role of surface oxygen”, Chem. Soc. Rev. 18 (1989) 451
[103] M. Oku, Y. Sato, “In-situ X-ray photoelectron spectroscopic study of the reversible phase transition between CoO and Co3O4 in oxygen of 10−3 Pa”, Appl. Surf. Sci. 55 (1992) 37
[104] K.C. Campbell, P.J. Holliman, R.W. Hoyle, D. Stirling, B.P. Williams, M.A. Morris, “Synthesis of a new extended -donor with 1,4-oxathiane annulation”, J. Mat. Chem. 7 (1997) 31
[105] M. Hoang, A.E. Hughes, T.W. Turney, “An XPS study of Ru-promotion for Co/CeO2 Fischer-Tropsch catalyst”, Appl. Surf. Sci. 72 (1993) 55
[106] K. Ichimura, Y. Inoue, I. Yasumori, “Catalysis by Mixed Oxide Perovskites. I. Hydrogenolysis of Ethylene and Ethane on LaCoO3”, Bull. Chem. Soc., Jpn. 53 (1980) 3044
[107] K. Ichimura, Y. Inoue, I. Yasumori, “Catalysis by Mixed Oxide Perovskites. II. The Hydrogenolysis of C3–C5 Hydrocarbons on LaCoO3”, Bull. Chem. Soc., Jpn. 54 (1981) 1787
[108] L.G. Tejuca, A.T. Bell, “Surface behaviour of reduced LaCoO3 as studied by TPD of CO, CO2 and H2 probes and by XPS”, Appl. Surf. Sci. 31 (1988) 301
[109] A. Miyakoshi, A. Ueno, M. Ichikawa, “XPS and TPD characterization of manganese-substituted iron–potassium oxide catalysts which are selective for dehydrogenation of ethylbenzene into styrene”, Appl. Catal. A 219 (2001) 249
[110] E. Ksepko, E. Talik, A. Ratuszna, A. Molak, Z. Ujma, I. Gruszka, “XPS examination of newly obtained (Na0.5Pb0.5)(Mn0.5Nb0.5)O3 ceramics”, J. Alloys Compd. 386 (2005) 35
[111] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, “Handbook of X-ray Photoelectron Spectroscopy”, Physical Electronics 1995 p. 25
[112] A.C. Larson, R.B. Von Dreele, “GSAS General Structure Analysis System”, LANSCE, MS-H805, Los Alamos National Laboratory
[113] T. Sato, Y. Koike, T. Endo, M. Shimada, “Preparation and characterization of quenched KNbO3-Nb205 glass”, J. Mat. Sci. 26 (1991) 510
校內:2106-01-30公開