| 研究生: |
吳秉翰 Wu, Bing-Han |
|---|---|
| 論文名稱: |
光敏性液晶彈性體及制動設計研究 Photo Tunable Liquid Crystalline Elastomers for Controlled Actuations |
| 指導教授: |
劉俊彥
Liu, Chun-Yen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 英文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 液晶彈性體 、液晶致動器 、液晶分子配向 、麥克爾加成反應 、聚多巴胺 、摩擦發電機 |
| 外文關鍵詞: | liquid crystal elastomers, LC actuators, alignment layers, Michael addition, polydopamine, triboelectric generator |
| 相關次數: | 點閱:195 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,智能材料在制動器的製作被廣泛的使用,其在微型機器人,微流體運輸,感測器以及人造肌肉等領域具有應用的潛力。在眾多制動器中,液晶致動器具有獨特的性質,由於液晶取向順序與高分子網絡結構的彈性相結合。本研究中使用兩種截然不同的手法製造兩種熱驅動液晶致動器。其一方法,將市售之液晶單體RM105、雙官能基液晶單體RM257、聚乙二醇二丙烯酸酯及光啟始劑(Irg184)均勻混合後,注入具有平行配向與垂直配向的玻璃反應槽再把溫度降至液晶相溫度進行光聚合反應,此合成的液晶彈性體薄膜之熱性質藉由DSC與POM進行鑑定,當此液晶致動器靠近及遠離熱源時能夠展現可逆性的彎曲現象。另一方法,將市售雙官能基液晶單體RM257、光起始劑(Irg184)與具有硫醇基的EDDET及PETMP用甲苯混合均勻後,添加少量稀釋過的DPA進行麥克爾加成反應。第一次聚合後,施加軸向拉伸使液晶彈性體內的分子達到單軸配向,此時多餘的丙烯酸酯再進行光聚合即可得到單軸配向的液晶彈性體,其單軸配向使用POM及XRD進行驗證。為了開發熱驅動的致動器,將合成的單軸配向液晶彈性體與一層聚氨酯薄膜結合在一起,並製作出具有可逆性彎曲變形的熱驅動液晶致動器。為了增強近紅外之靈敏度,將聚多巴胺塗覆在合成的液晶彈性體之表面,由實驗結果可知,本研究所製備的液晶致動器,可以有效地將熱能或光能轉換成機械動力。為了開發光、機械能與電能間的轉換之裝置,將近紅外光驅動之液晶彈性體與摩擦發電機進一步結合,基於結果,發現經由這種設計的液晶彈性體薄膜具有能量轉換之可能性,期望未來此液晶彈性體致動器能夠實際應用於能量轉換的裝置。
In recent years, smart materials have been widely used in the fabrication of actuators with potential applications in the fields of micro-robots, microfluidic transport, sensors and artificial muscles. Among many actuators, liquid crystal actuators have unique properties due to the combination of liquid crystal orientational order and the elasticity of polymer network structure. In this study, two types of thermal responsive liquid crystal actuators were fabricated via predesigned methods. Firstly, commercially available liquid crystal monomer RM105, difunctional liquid crystal monomer RM257, poly(ethyleneglycol) diacrylate and photo-initiator (Irg184) were mixed and photopolymerized in a glass cell with parallel and perpendicular alignment layers. Thermal properties of the synthesized liquid crystal elastomeric films (LCEs) were analyzed using DSC and POM. The liquid crystalline actuators exhibit reversible bending when close to and away from the heat source. Secondary, commercially available bifunctional liquid crystal monomer RM257, photo-initiator (Irg184), and EDDET and PETMP with thiol groups were dissolved in toluene, and then a small amount of diluted DPA was added to carry out Michael addition. After first polymerization, the polydomain liquid crystalline elastomer was uniaxial stretched and then photo-polymerized to obtain monodomain liquid crystal elastomer. The synthesized monodomain LCEs were confirmed using POM and X-ray diffractometer (XRD). To develop thermal actuators, the synthesized LCE was combined with a layer of polyurethane (PU). The fabricated LCE actuator shows reversible thermal responsive bending actuation. To enhance near infrared sensitivity, polydopamine (PDA) was coated on the synthesized LCE surface. The fabricated PDA coated LCE shows reversible NIR responsive actuations. To develop a photo-mechanical-electrical energy conversion device, the NIR responsive LCE was further combined with a triboelectric generator. Based on the results, fabrication of energy transformation device via such designed LCE films is possible. Application of the synthesized LCEs on actuators and energy transformation devices are expected.
References
[1] Y. Shang, J. Wang, T. Ikeda, and L. Jiang, "Bio-inspired liquid crystal actuator materials," Journal of Materials Chemistry C, vol. 7, no. 12, pp. 3413-3428, 2019.
[2] L. T. de Haan, A. P. Schenning, and D. J. Broer, "Programmed morphing of liquid crystal networks," Polymer, vol. 55, no. 23, pp. 5885-5896, 2014.
[3] F. Reinitzer, "Contributions to the knowledge of cholesterol," Liquid Crystals, vol. 5, no. 1, pp. 7-18, 1989.
[4] O. Lehmann, "Über fliessende krystalle," Zeitschrift für physikalische Chemie, vol. 4, no. 1, pp. 462-472, 1889.
[5] O. Lehmann, "Zur geschichte der flüssigen kristalle," Annalen der Physik, vol. 330, no. 5, pp. 852-860, 1908.
[6] O. Lehmann, "Bemerkungen zu Fr. Reinitzers Mitteilung über die Geschichte der flüssigen Kristalle," Annalen der Physik, vol. 332, no. 15, pp. 1099-1102, 1908.
[7] R. Kadu, V. K. Singh, S. K. Verma, P. Raghavaiah, and M. M. Shaikh, "Effect of substituents on crystal packing of functionalized 4, 4′-bis (benzylideneamino) diphenyl ether (s) and their reduced benzyl forms: Synthesis, characterization, optical and thermal properties," Journal of Molecular Structure, vol. 1033, pp. 298-311, 2013.
[8] J. H. Liu and P. C. Yang, "Preparation and optical performance of chiral polymers having azobenzene segments," Journal of applied polymer science, vol. 91, no. 6, pp. 3693-3704, 2004.
[9] J. H. Liu, P. C. Yang, Y. K. Wang, and C. C. Wang, "Optical behaviour of cholesteric liquid crystal cells with novel photoisomerizable chiral dopants," Liquid crystals, vol. 33, no. 3, pp. 237-248, 2006.
[10] G. H. Brown, "Structure, properties, and some applications of liquid crystals," JOSA, vol. 63, no. 12, pp. 1505-1514, 1973.
[11] C. R. Da Cruz, J. L. Figueirinhas, and P. J. Sebastião, NMR of Liquid Crystal Dendrimers. CRC Press, 2016.
[12] T. Govindaiah, "Electro-optical and thermodynamic studies on induced reentrant smectic-a phase in binary mixture of liquid crystalline materials Chem. Technol," Ind. J, vol. 11, p. 106, 2016.
[13] Y. Hirshberg, "Photochromy in the bianthrone series," Comp. Rend, vol. 231, p. 903, 1950.
[14] D. Mulder, A. Schenning, and C. Bastiaansen, "Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors," Journal of Materials Chemistry C, vol. 2, no. 33, pp. 6695-6705, 2014.
[15] M. J. Stephen and J. P. Straley, "Physics of liquid crystals," Reviews of Modern Physics, vol. 46, no. 4, p. 617, 1974.
[16] Y. Huang and S. Gui, "Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion," RSC advances, vol. 8, no. 13, pp. 6978-6987, 2018.
[17] P. J. Collings, M. Hird, and C. Tschierske, "Introduction to Liquid Crystals. Chemistry and Physics," Angewandte Chemie-English Edition, vol. 36, no. 18, pp. 2017-2017, 1997.
[18] S. Kumar, Liquid crystals: experimental study of physical properties and phase transitions. Cambridge University Press, 2001.
[19] K. Iam-Choon and W. Shin-Tson, Optics and nonlinear optics of liquid crystals. World Scientific, 1993.
[20] P. De Gennes and J. Prost, "The Physics of Liquid Crystals (Monographs on Physics)," ed: Oxford: Clarendon, 1995.
[21] T. J. White and D. J. Broer, "Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers," Nature materials, vol. 14, no. 11, pp. 1087-1098, 2015.
[22] P. G. De Gennes, M. Hébert, and R. Kant, "Artificial muscles based on nematic gels," in Macromolecular Symposia, 1997, vol. 113, no. 1, pp. 39-49: Wiley Online Library.
[23] I. Kundler and H. Finkelmann, "Director reorientation via stripe‐domains in nematic elastomers: influence of cross‐link density, anisotropy of the network and smectic clusters," Macromolecular Chemistry and Physics, vol. 199, no. 4, pp. 677-686, 1998.
[24] L. Dong and Y. Zhao, "Photothermally driven liquid crystal polymer actuators," Materials Chemistry Frontiers, vol. 2, no. 11, pp. 1932-1943, 2018.
[25] Q. He, Z. Wang, Y. Wang, A. Minori, M. T. Tolley, and S. Cai, "Electrically controlled liquid crystal elastomer–based soft tubular actuator with multimodal actuation," Science advances, vol. 5, no. 10, p. eaax5746, 2019.
[26] Q. He, Z. Wang, Y. Wang, Z. Song, and S. Cai, "Recyclable and self-repairable fluid-driven liquid crystal elastomer actuator," ACS Applied Materials & Interfaces, 2020.
[27] Z. Wang, H. Tian, Q. He, and S. Cai, "Reprogrammable, reprocessible, and self-healable liquid crystal elastomer with exchangeable disulfide bonds," ACS applied materials & interfaces, vol. 9, no. 38, pp. 33119-33128, 2017.
[28] T. Kamal and S.-y. Park, "Shape-responsive actuator from a single layer of a liquid-crystal polymer," ACS applied materials & interfaces, vol. 6, no. 20, pp. 18048-18054, 2014.
[29] J. Boothby and T. Ware, "Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers," Soft Matter, vol. 13, no. 24, pp. 4349-4356, 2017.
[30] S. Iamsaard, E. Anger, S. J. Aßhoff, A. Depauw, S. P. Fletcher, and N. Katsonis, "Fluorinated azobenzenes for shape‐persistent liquid crystal polymer networks," Angewandte Chemie, vol. 128, no. 34, pp. 10062-10066, 2016.
[31] C. Probst, C. Meichner, K. Kreger, L. Kador, C. Neuber, and H. W. Schmidt, "Athermal Azobenzene‐Based Nanoimprint Lithography," Advanced Materials, vol. 28, no. 13, pp. 2624-2628, 2016.
[32] H. Zhou, C. Xue, P. Weis, Y. Suzuki, S. Huang, K. Koynov, G. K. Auernhammer, R. Berger, H.-J. Butt, and S. Wu, "Photoswitching of glass transition temperatures of azobenzene-containing polymers induces reversible solid-to-liquid transitions," Nature Chemistry, vol. 9, no. 2, pp. 145-151, 2017.
[33] Y. Liu, B. Xu, S. Sun, J. Wei, L. Wu, and Y. Yu, "Humidity‐and photo‐induced mechanical actuation of cross‐linked liquid crystal polymers," Advanced Materials, vol. 29, no. 9, p. 1604792, 2017.
[34] S. Li, G. Han, and W. Zhang, "Concise synthesis of photoresponsive polyureas containing bridged azobenzenes as visible-light-driven actuators and reversible photopatterning," Macromolecules, vol. 51, no. 11, pp. 4290-4297, 2018.
[35] C. L. Van Oosten, C. W. Bastiaansen, and D. J. Broer, "Printed artificial cilia from liquid-crystal network actuators modularly driven by light," Nature materials, vol. 8, no. 8, pp. 677-682, 2009.
[36] X. Lu, H. Zhang, G. Fei, B. Yu, X. Tong, H. Xia, and Y. Zhao, "Liquid‐crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation," Advanced Materials, vol. 30, no. 14, p. 1706597, 2018.
[37] M. Pilz da Cunha, S. Ambergen, M. G. Debije, E. F. Homburg, J. M. den Toonder, and A. P. Schenning, "A Soft Transporter Robot Fueled by Light," Advanced Science, vol. 7, no. 5, p. 1902842, 2020.
[38] W. M. Gibbons, P. J. Shannon, S.-T. Sun, and B. J. Swetlin, "Surface-mediated alignment of nematic liquid crystals with polarized laser light," Nature, vol. 351, no. 6321, pp. 49-50, 1991.
[39] J. J. Ge, C. Y. Li, G. Xue, I. K. Mann, D. Zhang, S.-Y. Wang, F. W. Harris, S. Z. Cheng, S.-C. Hong, and X. Zhuang, "Rubbing-induced molecular reorientation on an alignment surface of an aromatic polyimide containing cyanobiphenyl side chains," Journal of the American Chemical Society, vol. 123, no. 24, pp. 5768-5776, 2001.
[40] G. Fernández, "Liquid-crystal polymers: Exotic actuators," Nature materials, vol. 12, no. 1, pp. 12-14, 2013.
[41] 江征晏, "表面物化特性對盤狀液晶配向影響之研究," 中山大學光電工程研究所學位論文, pp. 1-242, 2013.
[42] L. Zhang, J. Pan, C. Gong, and A. Zhang, "Multidirectional biomimetic deformation of microchannel programmed metal nanowire liquid crystal networks," Journal of Materials Chemistry C, vol. 7, no. 34, pp. 10663-10671, 2019.
[43] J. Cognard, Alignment of nematic liquid crystals and their mixtures. Routledge, 1982.
[44] K. Aoki, T. Seki, Y. Suzuki, T. Tamaki, A. Hosoki, and K. Ichimura, "Factors affecting photoinduced alignment regulation of cyclohexanecarboxylate-type nematic liquid crystals by azobenzene molecular films," Langmuir, vol. 8, no. 3, pp. 1007-1013, 1992.
[45] K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, "Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer," Langmuir, vol. 4, no. 5, pp. 1214-1216, 1988.
[46] 游琮宏, "控制混合矽烷鍍膜於玻璃表面產生可調變預傾角的液晶盒之研究," 成功大學光電科學與工程研究所學位論文, pp. 1-92, 2007.
[47] Q. Liu, N. Wang, J. r. Caro, and A. Huang, "Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes," Journal of the American Chemical Society, vol. 135, no. 47, pp. 17679-17682, 2013.
[48] K. Patel, P. Kushwaha, S. Kumar, and R. Kumar, "Lysine and α-Aminoisobutyric Acid Conjugated Bioinspired Polydopamine Surfaces for the Enhanced Antibacterial Performance of the Foley Catheter," ACS Applied Bio Materials, vol. 2, no. 12, pp. 5799-5809, 2019.
[49] Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, and L. Lu, "Dopamine‐melanin colloidal nanospheres: an efficient near‐infrared photothermal therapeutic agent for in vivo cancer therapy," Advanced materials, vol. 25, no. 9, pp. 1353-1359, 2013.
[50] Y. Ren, J. G. Rivera, L. He, H. Kulkarni, D.-K. Lee, and P. B. Messersmith, "Facile, high efficiency immobilization of lipase enzyme on magnetic iron oxide nanoparticles via a biomimetic coating," BMC biotechnology, vol. 11, no. 1, p. 63, 2011.
[51] W. Ye, D. Wang, H. Zhang, F. Zhou, and W. Liu, "Electrochemical growth of flowerlike gold nanoparticles on polydopamine modified ITO glass for SERS application," Electrochimica Acta, vol. 55, no. 6, pp. 2004-2009, 2010.
[52] S. Hong, Y. S. Na, S. Choi, I. T. Song, W. Y. Kim, and H. Lee, "Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation," Advanced Functional Materials, vol. 22, no. 22, pp. 4711-4717, 2012.
[53] V. Ball, "Polydopamine nanomaterials: recent advances in synthesis methods and applications," Frontiers in bioengineering and biotechnology, vol. 6, p. 109, 2018.
[54] Z. Li, Y. Yang, Z. Wang, X. Zhang, Q. Chen, X. Qian, N. Liu, Y. Wei, and Y. Ji, "Polydopamine nanoparticles doped in liquid crystal elastomers for producing dynamic 3D structures," Journal of Materials Chemistry A, vol. 5, no. 14, pp. 6740-6746, 2017.
[55] Z. Li, X. Zhang, S. Wang, Y. Yang, B. Qin, K. Wang, T. Xie, Y. Wei, and Y. Ji, "Polydopamine coated shape memory polymer: enabling light triggered shape recovery, light controlled shape reprogramming and surface functionalization," Chemical science, vol. 7, no. 7, pp. 4741-4747, 2016.
[56] Z. L. Wang, "Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors," ACS nano, vol. 7, no. 11, pp. 9533-9557, 2013.
[57] C. Wu, A. C. Wang, W. Ding, H. Guo, and Z. L. Wang, "Triboelectric nanogenerator: a foundation of the energy for the new era," Advanced Energy Materials, vol. 9, no. 1, p. 1802906, 2019.
[58] G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, and Z. L. Wang, "Triboelectric-generator-driven pulse electrodeposition for micropatterning," Nano letters, vol. 12, no. 9, pp. 4960-4965, 2012.
[59] D. Davies, "Charge generation on dielectric surfaces," Journal of Physics D: Applied Physics, vol. 2, no. 11, p. 1533, 1969.
[60] Q. Zheng, B. Shi, F. Fan, X. Wang, L. Yan, W. Yuan, S. Wang, H. Liu, Z. Li, and Z. L. Wang, "In vivo powering of pacemaker by breathing‐driven implanted triboelectric nanogenerator," Advanced materials, vol. 26, no. 33, pp. 5851-5856, 2014.
[61] L. Lin, S. Wang, Y. Xie, Q. Jing, S. Niu, Y. Hu, and Z. L. Wang, "Segmentally structured disk triboelectric nanogenerator for harvesting rotational mechanical energy," Nano letters, vol. 13, no. 6, pp. 2916-2923, 2013.
[62] X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, and Z. L. Wang, "Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator," Science advances, vol. 3, no. 7, p. e1700694, 2017.
[63] L. Xu, T. Jiang, P. Lin, J. J. Shao, C. He, W. Zhong, X. Y. Chen, and Z. L. Wang, "Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting," ACS nano, vol. 12, no. 2, pp. 1849-1858, 2018.