| 研究生: |
周怡均 Chou, Yi-Chun |
|---|---|
| 論文名稱: |
多時期微陣列資料基因表現的傅立葉模型配適 Fourier Fitting for Time-Course Gene Expression Microarray Data |
| 指導教授: |
詹世煌
Chan, Shih-Huang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 21 |
| 中文關鍵詞: | 多時期微陣列 、AIC 、插補法 、傅立葉模型 |
| 外文關鍵詞: | Time-course microarray data, AIC, Interpolation, Fourier model |
| 相關次數: | 點閱:135 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基因微陣列(Microarray)是近年來基因體生物醫學研究的新技術。其產生的龐大資料需要應用到統計分析及生物資訊的相關方法,期望能找出具有生物意義的結果,而這也是當前生物資訊研究者的熱門研究課題。本研究以傅立葉模型(Fourier model)配適多時期微陣列基因資料,以AIC準則選取每一個基因相對應的項數和週期,再針對所得到的係數值、項數和週期進行資料的模型插補,並以傅立葉模型配適後的項數(term)和週期(cycle)來預測。經由模擬發現,我們所用的方法無論在資料配適和預測上,有較佳的效率。
In recent years, the development of cDNA microarray technology allows people to investigate thousands of genes simultaneously. An enormous number of gene expressions are generated through the high throughput technology, hoping that biological information can be extracted by the use of statistical analysis. This thesis is devoted to applying Fourier model to fit time-course microarray gene expression data, selecting the term and cycle for each gene by AIC criteria. The efficiency in estimating the term and cycle, and the accuracy in estimation and prediction in interpolating some time points are investigated. It is found that, through simulation, the data interpolation approach is able to improve the efficiency in estimation and prediction.
Aach, J. and Church G. M. (2001). Aligning gene expression time series with time warping algorithms. Bioinformatics, 17(6), 495-508.
Alter et al., (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences, 97(18), 10101-10106.
Bar-Joseph et al., (2002). A new approach to analyzing gene expression time series data. Proceedings of Research in Computational Molecular Biology, 6, 39-48.
Bar-Joseph et al., (2003). Continuous representations of time series gene expression data. Journal of Computational Biology, 10(3-4), 341-356.
Chung M. L. (2010). Model fitting and comparison for time-course microarray data. Department of Statistics National Cheng Kung University.
D'haeseleer P. (1999). Linear modeling of mRNA expression levels during cns development and injury. Pacific Symposium on Biocomputing, 4, 41-52.
Holter et al., (2001). Dynamic modeling of gene expression data. Proceedings of the National Academy of Sciences, 98(4), 1693-1698.
Kim et al., (2006). Clustering periodic patterns of gene expression based on Fourier approximations. Current Genomics, 7(3), 197-203.
Kim et al., (2006). A computational approach to the functional clustering of periodic gene-expression profiles. Genetics Society of America, 180(2), 821-834.
Kim et al., (2008). Clustering of change patterns using Fourier coefficients. Bioinformatics, 24(2), 184-191.
Li et al., (2002). Statistical methods for analysis of time course gene expression data. Frontiers in Bioscience, 7, a90-a98.
Luan Y. and Li H., (2003). Clustering of time-course gene expression data using a mixed-effects model with B-splines. Bioinformatics, 19(4), 474-482.
Luan Y. and Li H., (2004). Model-based methods for identifying periodically expressed genes based on time course microarray gene expression data. Bioinformatics, 20(3), 332-339.
Spellman et al., (1998). Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273-3297.