| 研究生: |
李承翰 Li, Cheng-Han |
|---|---|
| 論文名稱: |
考量使用者心理因素之產品說服設計:以家庭能源管理系統為例 Persuasive Strategies Considering the Users’ Psychological Factors : a Case Study of Home Energy Management System Design |
| 指導教授: |
施勵行
Shih, Li-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 說服科技 、使用者類型 、心理因素 、家庭能源管理系統 |
| 外文關鍵詞: | Persuasive Technology, Users’ Type, Psychological Factors, Home Energy Management System |
| 相關次數: | 點閱:109 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球暖化日趨嚴重,人們對於節能減碳的日益重視,根據2015年巴黎協議後台灣的溫室氣體減量目標,設定2030年溫室氣體排放量減量50%,相當於2005年排放量再減20%,有關住宅部門溫室氣體排放減量是刻不容緩。在過去,人們雖然知道要節能,卻不瞭解家中電器產品的個別耗電量,或因心理因素以及個人的背景因素,造成能源的浪費,隨著科技的進步,市面上發展出許多使用資訊通信技術的家庭能源管理系統產品,這些產品可使有上述原因的人們改變以往不永續的行為,達成節能永續目標,但這些產品大多數沒有考量使用者差異進行設計。
因此本研究旨在探討行為改變的心理模型,識別使用者類型,並運用說服科技,分別提出適合不同群體的說服設計策略。首先,透過產品案例的收集,瞭解這類型產品的節能行為與其蘊含的說服策略,再運用文獻的回顧蒐集行為改變理論文獻整理出影響產品節能行為的因素,以說服科技模型為架構進行問卷設計,藉由問卷調查的結果,得知行為改變理論能有效的幫助說服策略設計外,不同的使用者心理因素將會影響使用者的說服策略偏好,以上成果可幫助企業在未來設計此類家庭能源管理系統產品,更能細分目標產品使用者類型與設計出以人為本更具說服力的產品。
As we are paying more and more attention to « Energy Conservation and Carbon Reduction », the products of home energy management system (HEMS) are innovated to help to achieve this objective. However, these products are not generally accepted due to the fact that they are not innovated with the aim of serving different users.
For this reason, this study is going to propose the persuasive HEMS product designs and strategies by taking account of user differences. First, the possible relationship between psychological factors and persuasion is going to be discussed and analyzed by collecting literature on behavioral modification and persuasive technology. Then, the appropriate persuasive design system procedure is going to be aggregated according to the above-mentioned discussion. Afterwards, the questionnaire will be adopted to evaluate different persuasion degrees of persuasive design and strategies for different users in order to find out the best persuasive strategy in regards of user differences. As for persuasive design system procedure proposed by this study, the related industries can improve their own products through such procedure and by comparing the list. In this way, the HEMS products corresponding to the needs of clients can be innovated.
中文部分
1.鄭約得. (2015). 結合目標導向行為模式之永續行為設計. 成功大學資源工程學系博士學位論文, 1-116.
2.鄭伊秦 (2016). 考量使用者類型下節能減碳行為鼓勵資訊系統之說服與遊戲設計策略. 成功大學資源工程學系碩士學位論文, 1-200.
3.陳正昌, 程炳林, 陳新豐, & 劉子鍵. (2009). 多變量分析方法: 統計軟體應用 (五版). 台北: 五南.
4.蕭文龍. (2013). 統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS). 臺北市: 碁峰資訊.
英文部分
1.Ajzen, I., & Fishbein, M. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
2.Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
3.Ajzen, I., & Manstead, A. S. (2007). Changing health-related behaviors: An approach based on the theory of planned behavior. The scope of social psychology: Theory and applications, 43-63.
4.Abrahamse, W., & Steg, L. (2009). How do socio-demographic and psychological factors relate to households’ direct and indirect energy use and savings?. Journal of economic psychology, 30(5), 711-720.
5.Aman, S., Simmhan, Y., & Prasanna, V. K. (2013). Energy management systems: state of the art and emerging trends. IEEE Communications Magazine, 51(1), 114-119.
6.Alahäivälä, T., & Oinas-Kukkonen, H. (2016). Understanding persuasion contexts in health gamification: a systematic analysis of gamified health behavior change support systems literature. International journal of medical informatics, 96, 62-70.
7.Adaji, I., & Vassileva, J. (2016). Evaluating Persuasive Systems Using the PSD Framework. In UMAP (Extended Proceedings).
8.Botetzagias, I., Malesios, C., & Poulou, D. (2014). Electricity curtailment behaviors in Greek households: Different behaviors, different predictors. Energy Policy, 69, 415-424.
9.Consolvo, S., Everitt, K., Smith, I., & Landay, J. A. (2006). Design requirements for technologies that encourage physical activity. In Proceedings of the SIGCHI conference on Human Factors in computing systems ,457-466.
10.Chen, M. F. (2016). Extending the theory of planned behavior model to explain people's energy savings and carbon reduction behavioral intentions to mitigate climate change in Taiwan–moral obligation matters. Journal of Cleaner Production, 112, 1746-1753.
11.Chen, C. F., Xu, X., & Day, J. K. (2017). Thermal comfort or money saving? Exploring intentions to conserve energy among low-income households in the United States. Energy Research & Social Science, 26, 61-71.
12.Coskun, A., & Erbug, C. (2017). User orientation maps: an approach to address user diversity in design for sustainable behaviour. The Design Journal, 20(1), 131-152.
13.Ek, K., & Söderholm, P. (2010). The devil is in the details: Household electricity saving behavior and the role of information. Energy Policy, 38(3), 1578-1587.
14.Fogg, B. J. (1998). Persuasive computers: perspectives and research directions. Proceedings of the SIGCHI conference on human factors in computing systems. ACM Press/Addison-Wesley Publishing Co., 225-232.
15.Fogg, B. J. (2002). Persuasive technology: using computers to change what we think and do. Ubiquity, 5.
16.Fogg, B. J.(2009). “ A behavior model for persuasive design.” Proceedings of the 4th International Conference on Persuasive Technology. Claremont, California, ACM, 1-7.
17.Fornara, F., Pattitoni, P., Mura, M., & Strazzera, E. (2016). Predicting intention to improve household energy efficiency: The role of value-belief-norm theory, normative and informational influence, and specific attitude. Journal of Environmental Psychology, 45, 1-10.
18.Halko, S., & Kientz, J. (2010). Personality and persuasive technology: an exploratory study on health-promoting mobile applications. Persuasive technology, 150-161.
19.Halttu, K., Oduor, M., Tikka, P., & Oinas-Kukkonen, H. (2015). About the Persuasion Context for BCSSs: Analyzing the Contextual Factors. In BCSS@ PERSUASIVE ,43-50.
20.Jäger, M., Luitjens, S., Mihajlovic, V., Snijder, F., Tsoneva, T., Weda, H., & Weffers-Albu, A. (2009). Raising Awareness on Energy Consumption of Household Devices. In Proceedings of the EcoDesign 2009 Conference, Sapporo, Japan, December ,7-9.
21.Klöckner, C. A., & Blöbaum, A. (2010). A comprehensive action determination model: Toward a broader understanding of ecological behaviour using the example of travel mode choice. Journal of Environmental Psychology, 30(4), 574-586.
22.Karlin, B., Ford, R., Sanguinetti, A., Squiers, C., Gannon, J., Rajukumar, M., & Donnelly, K. A. (2015). Characterization and potential of Home Energy Management (HEM) technology. Pacific Gas and Electric Company report.
23.Kelders, S. M., Kulyk, O. A., van Gemert-Pijnen, L., & Oinas-Kukkonen, H. (2015). Selecting Effective Persuasive Strategies in Behavior Change Support Systems. In BCSS@ PERSUASIVE ,1-6.
24.Karppinen, P., Oinas-Kukkonen, H., Alahäivälä, T., Jokelainen, T., Keränen, A. M., Salonurmi, T., & Savolainen, M. (2016). Persuasive user experiences of a health Behavior Change Support System: A 12-month study for prevention of metabolic syndrome. International journal of medical informatics, 96, 51-61.
25.Lee, G., Tsai, C., Griswold, W. G., Raab, F., & Patrick, K. (2006). PmEB: a mobile phone application for monitoring caloric balance. In CHI'06 Extended Abstracts on Human Factors in Computing Systems ,1013-1018. ACM.
26.LaMarche, J., Cheney, K., Christian, S., & Roth, K. (2011). Home energy management products & trends. Fraunhofer Center for Sustainable Energy Systems, 1-11.
27.Langevin, J., Gurian, P. L., & Wen, J. (2013). Reducing energy consumption in low income public housing: Interviewing residents about energy behaviors. Applied Energy, 102, 1358-1370.
28.Lewis, M. (2007). Stepwise versus Hierarchical Regression: Pros and Cons. Online Submission.
29.Martinsson, J., Lundqvist, L. J., & Sundström, A. (2011). Energy saving in Swedish households. The (relative) importance of environmental attitudes. Energy Policy, 39(9), 5182-5191.
30.Oinas-Kukkonen, H. & Harjumaa M. (2009). Persuasive systems design: key issues, process model, and system features. Communications of the Association for Information Systems, 24, Article 28, 485-500.
31.Oinas-Kukkonen, H. (2013). A foundation for the study of behavior change support systems. Personal and ubiquitous computing, 17(6), 1223-1235.
32.Orji, R., Vassileva, J., & Mandryk, R. L. (2014). Modeling the efficacy of persuasive strategies for different gamer types in serious games for health. User Modeling and User-Adapted Interaction, 24(5), 453-498.
33.Orji, R. (2017). Why Are Persuasive Strategies Effective? Exploring the Strengths and Weaknesses of Socially-Oriented Persuasive Strategies. In International Conference on Persuasive Technology ,253-266.
34.Pothitou, M., Hanna, R. F., & Chalvatzis, K. J. (2016). Environmental knowledge, pro-environmental behaviour and energy savings in households: An empirical study. Applied Energy, 184, 1217-1229.
35.Schwartz, S. H. (1977). Normative influence on altruism. L. Berkowitz (Ed.), Advances in Experimental Social Psychology, 10, Academic Press, New York (1977), 221-279.
36.Sütterlin, B., Brunner, T. A., & Siegrist, M. (2011). Who puts the most energy into energy conservation? A segmentation of energy consumers based on energy-related behavioral characteristics. Energy Policy, 39(12), 8137-8152.
37.Scott, F. L., Jones, C. R., & Webb, T. L. (2014). What do people living in deprived communities in the UK think about household energy efficiency interventions?. Energy Policy, 66, 335-349.
38.Toscos, T., Faber, A., An, S., & Gandhi, M. P. (2006). Chick clique: persuasive technology to motivate teenage girls to exercise. In CHI'06 extended abstracts on Human factors in computing systems 1873-1878.
39.Torning, K., & Oinas-Kukkonen, H. (2009). Persuasive system design: state of the art and future directions. In Proceedings of the 4th international conference on persuasive technology (p. 30). ACM.
40.Van der Werff, E., & Steg, L. (2015). One model to predict them all: predicting energy behaviours with the norm activation model. Energy Research & Social Science, 6, 8-14.
41.Van der Werff, E., & Steg, L. (2016). The psychology of participation and interest in smart energy systems: Comparing the value-belief-norm theory and the value-identity-personal norm model. Energy Research & Social Science, 22, 107-114.
42.Watson, R. T., Corbett, J., Boudreau, M. C., & Webster, J. (2012). An information strategy for environmental sustainability. Communications of the ACM, 55(7), 28-30.
43.Wever, R. and Kuijk, J.,and Boks,C. (2008). “ Usercentred design for sustainable behaviour.” International Journal of Sustainable Engineering,Vol.1(1), 9-20.
44.Wang, Z., Zhang, B., Yin, J., & Zhang, Y. (2011). Determinants and policy implications for household electricity-saving behaviour: evidence from Beijing, China. Energy Policy, 39(6), 3550-3557.
45.Webb, D., Soutar, G. N., Mazzarol, T., & Saldaris, P. (2013). Self-determination theory and consumer behavioural change: Evidence from a household energy-saving behaviour study. Journal of Environmental Psychology, 35, 59-66.
46.Wolske, K. S., Stern, P. C., & Dietz, T. (2017). Explaining interest in adopting residential solar photovoltaic systems in the United States: Toward an integration of behavioral theories. Energy Research & Social Science, 25, 134-151.
47.Yang, S., Zhang, Y., & Zhao, D. (2016). Who exhibits more energy-saving behavior in direct and indirect ways in china? The role of psychological factors and socio-demographics. Energy Policy, 93, 196-205.
48.Zhang, Y., Wang, Z., & Zhou, G. (2013). Antecedents of employee electricity saving behavior in organizations: An empirical study based on norm activation model. Energy Policy, 62, 1120-1127.
校內:2022-07-20公開