| 研究生: |
楊宗明 Yang, Tzung-Ming |
|---|---|
| 論文名稱: |
應用離散移動式最小平方誤差法於疊代式高/低通濾波器 Iterative High/Low Passed Filters via Discrete Moving Least Squares Methods |
| 指導教授: |
鄭育能
Jeng, Yih-Nen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 最小平方誤差法 、濾波器 、疊代式 |
| 外文關鍵詞: | filter, least squares methods, Iterative |
| 相關次數: | 點閱:64 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文應用移動式最小平方誤差法發展出一套全新的疊代型濾波器。本文證明移動式最小平方誤差法是一種擴散型數值法,若用之為濾波器,則在頻譜圖上之切斷頻率附近會產生一個寬的過渡區。新的疊代型濾波器可以有效地縮減過渡區的頻寬。假設數據串的頻譜圖上有一沒有任何波的空窗區,則可以應用新的疊代式高斯平滑法或移動式最小平方誤差法,經使用小心的選擇高斯核因子 和疊代次數,成功地拆解出相同的長短波形。此一結果與濾波器的階次無關。因此,可以用一個簡單低階疊代的方法去獲得高階的濾波結果。若使用新的疊代法去處理含有斷點的數據串,將會產生數值上的蘭矩(RUNGE)振盪現象。振盪波從斷點位置起向兩邊衰減,第一個振盪波的波長只與高斯函數之平滑參數 成正比率,但振幅則只與斷點的高低大小有關。斜率及高次導函數的不連續性所產生的振盪誤差不大,且其振幅和波長都和平滑參數 成比率,因此若使用合理小的 ,可以不需特意處理導函數的斷點誤差。本文並提出一種簡易數據串之分段濾波法,對各段分別做平滑,數值證明此種簡易法可以消除振盪性誤差。
The discrete moving least squares methods weighted by the Gaussian function are shown to be diffusive. These methods have wide transition zones in the vicinity of the cut-off frequency selected to filter a given data string. An iterative scheme has been proposed to effectively reduce the width of the transition zone and a sufficient condition to achieve the convergence is derived. If the frequency of a given data string is distinguishable, by careful selections of the Gaussian kernel factor, , and iterative number, , one can successfully separate the wave formations of the high and low frequency parts. This separation of the two frequency parts is unique and is independent of the order of the least squares methods. Consequently, one can employ a simpler low-order iterative scheme to achieve high-order solutions. The method has been successfully applied to several designed examples. A simple two-dimensional example is also tested to demonstrate the validity of the method in complex multi-dimensional situations. If the filtered data string involves a discontinuous jump, the iterative filter will give a smooth data with the Runge numerical oscillation phenomenon. The oscillatory wavelength is approximately proportional to the smoothing factor while the amplitude is approximately proportional to the jump magnitude. The induced oscillations across a jump of low and high order derivatives of a data string are not significantly large as comparing with that of the data string. In order to eliminate the oscillation, a strategy of piecewise smoothing is proposed where the boundaries of each segment is determined by some criteria.
1.R. Hua, and T. K. Sarkar, “Generalized Pencil-of-Function Method for Extracting Poles of an EM System from Its Transient Response,” IEEE Trans. Antennas and Propagation, vol.37, no.2, Feb. 1989, pp.229-234.
2.D. D. Ruscio, “On Subspace Identification of Extended Observability Matrix,” Proc. Of 36th Conf. on Decision & Control., San Diego, Cal. U.S.A., Dec. 1997, Paper no.TA05, pp.1841-1847.
3.N. E. Huang, Z. Shen, and S. R. Long, "A New View of Nonlinear Water Waves: the Hilbert Spectrum," Annual Reviews of Fluid Mechanics, 1999, vol.51, pp.417-457.
4.N. E. Huang, Z. Shen, S. R. Long, Long, M. C. Long, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis,” Proc. R. Soc. Lond. A., vol. 454, pp.903-995, 1998.
5.P. Lancaster and K. Salkauskas, `Curve and Surface Fitting An Introduction’, Academic Press, New York, 1986, Chapter 2, pp.55-65, Chapter 10, pp.225-244. D. Marr and E. Hildreth, “Theory of Edge Detec- tion,” Proc. Royal Soc. London B. vol.207, pp.187- 217, 1980.
6.G. Fasshauer, “Approximate Moving Least-Squares Approximations: A Fast and Accurate Multivariate Approximation Method,” Curve and Surfaces Fitting, vol.1, no.1, pp.1-10, 2002.
7.K. M. Liew, Y. Q. Huang, and J. N. Reddy, “A Hybrid Moving Least Squares and Differential Quadrature (MLSDQ) Meshfree Method,” Int. J. of Computational Engineering Science,” vol.3, No.1, pp.1-12. 2002.
8.Y. N. Jeng, “The Moving Least Squares and Least p-Power Methods for Random Data,” The 7-th National Computational Fluid Dynamics Conference, P-9 to P-14, Aug. 2000.
9.A. K. Mackworth, and F. Mokhtarian, “Scale-Based Description of Planar Curves,” Proc. 5th Canadian Soc. Comp. Studies Intell. London, Ontario pp.114- 119, May 1984.
10.F. Mokhtarian and A. Mackworth, “Scale-Based Description and Recognition of Planar Curves and Two-Dimensional Shapes,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, no. 1, pp. 34-43, Jan. 1986.
11.D. G. Lowe, “Organization of Smooth Image Curves at Multiple Scales,” Int. J. Computer Vision, vol.3, pp.119-130, 1989.
12.I. Weiss, “High-Order Differentiation Filters that Work,” IEEE Trans. On Pattern Analysis and Machine Intelligence, vol.16, no.7, July, pp.734-739, 1994.
13.Y. N. Jeng and Y. C. Cheng, “A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals”, 10-th National Computational Fluid Dynamics Conference of Taiwan, Hua-Lien, 2003, Paper no.A-9, also Transactions of the Aeronautical and Astronautic Society of the Republic of China in press, 2004.
14.H. S. Carslaw and J. C. Jaeger, “Conduction of Heat in Solids,” New York, Oxford University Press, 1957.
15.P. M. Morse and H. Feshbach, “Methods of Theoretical Physics,” New York, McGraw-Hill , vol.2, 1953.
16.H. T. Huynh, “Accurate Monotone Cubic Interpolation,” SIAM J. Number. Anal. vol.30, no.1, pp57-100, Feb.1993.