| 研究生: |
楊承融 Yang, Cheng-Rong |
|---|---|
| 論文名稱: |
應用遺傳演算法於五軸虛擬工具機體積誤差分配 Application of Genetic Algorithm to Allocating Volumetric Errors for Five-Axis Virtual Machine Tools |
| 指導教授: |
李榮顯
Lee, Rong-Shean |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 五軸工具機 、體積誤差分配 、遺傳演算法 |
| 外文關鍵詞: | Five-axis machine tool, Volumetric error allocation, Genetic Algorithm |
| 相關次數: | 點閱:194 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要目的在於利用遺傳演算法將工具機的體積誤差分配到其運動軸之組裝誤差項。本文定義出此問題最佳化之目標函數和限制條件。此目標函數包含了三個部分,分別是工具機運動軸誤差量測和製造的成本、各組裝誤差項對體積誤差之敏感度和不可直接補償的機台組裝誤差項之值。在限制條件方面,以形狀創成函數為基礎,評估各組裝誤差項對刀尖點中心位置誤差的體積誤差量。考慮此體積誤差量要小於加工時所希望的精度,可建立出限制條件。
應用本文所提出的最佳化遺傳演算法並實作出人機介面,本文發展出一個系統可提供工具機設計者分配體積誤差至各組裝誤差項。此系統具有兩項功能,其中一項可依照不同的加工件和加工精度,建議使用者各誤差項所應設計的區間。而第二項功能則是可以提供體積誤差分佈圖,可顯示出刀具路徑檔中各個刀具中心點所產生的體積誤差量。應用商業軟體VERICUT來驗證體積誤差數學模型的正確性,並用蒙地卡羅模擬來驗證體積誤差分配區間的正確性。
The purpose of this thesis is using genetic algorithms to allocate the volumetric error of machine tool to assembly error terms of its motion axes. To solve this problem, the objective function and constraints should be defined. There are three parts in objective function which are the costs of measurement and manufacture. The sensitivity of assembly error terms to volumetric error and values of assembly error terms. Regarding to the constraints, the form-shaping function was used to evaluate the volumetric error of tool center point caused by each assembly error term. The constraints are established such that volumetric error should less and equal to the targeted accuracy value.
Applying the optimal genetic algorithm of this thesis and implementing a human machine interface, a system was developed for machine tool designer to allocate volumetric error to each assembly error term. This system has two functions. The first is suggesting user the range of each error terms according the different workpiece and the machine accuracy. The second is providing a volumetric error diagram to show the volumetric error of each tool center point of given cutter location file. The proposed volumetric error mathematical model has been verified by using VERICUT simulation. The results of volumetric error allocation have been verified by Monte-Carlo simulation.
Abbaszadeh-Mir, Y., J. R. R. Mayer, G. Cloutier and C. Fortin "Theory And Simulation For The Identification Of The Link Geometric Errors For A Five-Axis Machine Tool Using A Telescoping Magnetic Ball-Bar." International Journal of Production Research 40: 4781 - 4797. (2002).
Bohez, E. L. J. "Five-Axis Milling Machine Tool Kinematic Chain Design And Analysis." International Journal of Machine Tools & Manufacture 42(4): 505-520. (2002).
Bohez, E. L. J., B. Ariyajunya, C. Sinlapeecheewa, T. M. M. Shein, D. T. Lap and G. Belforte "Systematic Geometric Rigid Body Error Identification Of 5-Axis Milling Machines." Computer-Aided Design 39(4): 229-244. (2007).
CNS 14635, B. 無負載或精加工情況下工具機運轉之幾何精度. (2002).
Dassanayake, K. M. M., M. Tsutsumi and A. Saito "A Strategy For Identifying Static Deviations In Universal Spindle Head Type Multi-Axis Machining Centers." International Journal of Machine Tools and Manufacture 46(10): 1097-1106. (2006).
Florussen, G. H. J., F. L. M. Delbressine, M. J. G. van de Molengraft and P. H. J. Schellekens "Assessing geometrical errors of multi-axis machines by three-dimensional length measurements." Measurement 30(4): 241-255. (2001).
Inasaki, I., K. Kishinami, S. Sakamoto, N. Sugimura, Y. Takeuchi and F. Tanaka Shape Generation Theory Of Machine Tools—Its Basis And Applications. Tokyo:Yokendo. (1997).
ISO-230-1 Test Code for Machine Tools. Part 1. Geometric Accuracy Of Machines Operating Under No-Load Or Finishing Conditions. ISO, Geneva. (1996).
ISO-230-7 Test Code for Machine Tools. Part 7. Geometric Accuracy Of Axes Of Rotation. ISO, Geneva. (2006).
Kiridena, V. S. B. and P. M. Ferreira "Kinematic Modeling Of Quasistatic Errors Of Three-Axis Machining Centers." International Journal of Machine Tools and Manufacture 34(1): 85-100. (1994).
Lei, W. T. and Y. Y. Hsu "Accuracy Test Of Five-Axis CNC Machine Tool With 3D Probe-Ball. Part I: Design And Modeling." International Journal of Machine Tools and Manufacture 42(10): 1153-1162. (2002).
Lei, W. T. and Y. Y. Hsu "Accuracy Test Of Five-axis CNC Machine Tool With 3D Probe-Ball. Part II: Errors Estimation." International Journal of Machine Tools and Manufacture 42(10): 1163-1170. (2002).
Lin, P. D. and K. F. Ehmann "Direct Volumetric Error Evaluation For Multi-Axis Machines." International Journal of Machine Tools and Manufacture 33(5): 675-693. (1993).
Lin, Y. and Y. Shen "Modelling Of Five-Axis Machine Tool Metrology Models Using The Matrix Summation Approach." International Journal of Advanced Manufacturing Technology 21: 243-248. (2003).
Mahbubur, R. M. D., J. Heikkala, K. Lappalainen and J. A. Karjalainen "Positioning Accuracy Improvement In Five-Axis Milling By Post Processing." International Journal of Machine Tools and Manufacture 37(2): 223-236. (1997).
Nassef, A. O. and H. A. EIMaraghy "Allocation Of Geometric Tolerances: New Criterion And Methodology." CIRP Annals - Manufacturing Technology 46(1): 101-106. (1997).
Ramesh, R., M. A. Mannan and A. N. Poo "Error Compensation In Machine Tools - A Review Part I: Geometric, Cutting-Force Induced And Fixture-Dependent Errors." International Journal of Machine Tools & Manufacture 40(9): 1235-1256. (2000).
Reshetov, D. N. and V. T. Portman Accuracy Of Machine Tools. New York, ASME PRESS. (1988).
Schwenke, H., W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt and F. Delbressine "Geometric Error Measurement And Compensation Of Machines--An Update." CIRP Annals - Manufacturing Technology 57(2): 660-675. (2008).
Soons, J. A., F. C. Theuws and P. H. Schellekens "Modeling The Errors Of Multi-Axis Machines: A General Methodology." Precision Engineering 14(1): 5-19. (1992).
Srivastava, A. K., S. C. Veldhuis and M. A. Elbestawit "Modelling Geometric And Thermal Errors In A Five-Axis CNC Machine Tool." International Journal of Machine Tools and Manufacture 35(9): 1321-1337. (1995).
Takeuchi, Y. and T. Watanabe "Generation Of 5-Axis Control Collision-Free Tool Path And Postprocessing For NC Data." CIRP Annals - Manufacturing Technology 41: 539-542. (1992).
Tsutsumi, M. and A. Saito "Identification And Compensation Of Systematic Deviations Particular To 5-Axis Machining Centers." International Journal of Machine Tools and Manufacture 43(8): 771-780. (2003).
Tsutsumi, M. and A. Saito "Identification Of Angular And Positional Deviations Inherent To 5-Axis Machining Centers With A Tilting-Rotary Table By Simultaneous Four-Axis Control Movements." International Journal of Machine Tools and Manufacture 44(12-13): 1333-1342. (2004).
Uddin, M. S., S. Ibaraki, A. Matsubara and T. Matsushita "Prediction And Compensation Of Machining Geometric Errors Of Five-Axis Machining Centers With Kinematic Errors." Precision Engineering 33(2): 194-201. (2009).
Yang, C. C. and V. N. A. Naikan "Optimum Design Of Component Tolerances Of Assemblies Using Constraint Networks." International Journal of Production Economics 84(2): 149-163. (2003).
Zhang, C. and H.-P. Wang "Robust Design Of Assembly And Machining Tolerance Allocations." IIE Transactions 30(1): 17-29. (1997).
佘振華 空間凸輪五軸加工數值控制程式設計系統之研究, 國立成功大學機械工程研究所. 博士論文. (1997).
周鵬程 遺傳演算法原理與應用活用Matlab. 台灣台北縣, 全華圖書股份有限公司. (2007).
莊信源 類神經模糊系統與遺傳演算法在加工參數最佳化之應用, 國立台灣海洋大學機械與輪機工程學系. 碩士論文. (2000).
陳冠安 以形狀創成函數探討五軸工具機組裝誤差對體積誤差之效應, 國立成功大學機械工程學系. 碩士論文. (2010).
陳福成 綜合加工機機構之構形合成, 國立成功大學機械工程研究所. 博士論文. (1997).