| 研究生: |
許一中 Hsu, Yi-Chung |
|---|---|
| 論文名稱: |
9,9-二苯基-9氫-茀衍生物之熱穩定性與溶解性質之探討 Studies on Thermal Stability and Solubility of 9,9-diphenyl-9H-fluorene derivatives |
| 指導教授: |
葉茂榮
Yeh, Mou-Yung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 高分子材料 、9-二苯基-9氫-茀 、光電 、聚茀 、激發光子 |
| 外文關鍵詞: | Kissinger method, Flynn-wall-ozawa method, 9-diphenyl-9H-fluorene, keto defect, Vyazovkin method, 9 |
| 相關次數: | 點閱:40 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於聚茀材料在發光二極體元件之應用中最大的問題在於藍光材料的不穩定性。當藍光聚茀高分子在高溫的環境中或電壓操作下時,會導致原本的藍光光譜往紅位移的區域移動,並於綠光區域(530nm)之處產生一放射峰,而本研究主要針對聚茀高分子在高溫下會氧化產生酮基,造成Keto-defect之現象進行改質,以9,9-二苯基-9氫-茀為單體進行聚合反應,利用UV、PL之光譜分析,與市售之PFO比較發現其Keto-defect之現象已獲得改善,另外設計將烷基長碳鏈之部份放在主鏈上,一方面可增加其溶解度,另一方面也將傳統長碳鏈放在Fluorene 9號位置上造成Keto defect之情形改進。
最後利用動力學計算方法,Kissinger method, Flynn-wall-ozawa method,Vyazovkin method來計算高分子之熱分解活化能,探討其熱穩定性,由於PAR為芳香環共軛系統造成PAR之熱穩定性高於PAL。
Polyfluorenes (PFs) exhibit high photoluminescence efficiency good charge transport,thermal stability,and good solubility in organic solvent. These characterization of PFs are attractive for use in polymer light-emitting diodes(PLEDs). It is well known that the keto defects are generated by photo-oxidation and thermal oxidation.
The photoluminescence(PL) from PFs are found that the low-energy emission band originates from Keto defect. As a result, the color purity need improvement for fabrication of device. Due to the disadvantage, we have improved the performance of PL from PFs, we also discuss the active energy and thermal stability of the PFs by using kinetic calculation.
1. 張淑美;科學月刊,374期,P.106,2001年2月號.
2. G. Destriau, J. Chem. Phys., 1936, 33, 587.
3. H. Ohnishi, Ann. Rev. Mater. Res., 1989, 19, 83.
4. S. Matsumoto, editor. Electronic display devices, New York, Wiley,
1990, Chapt 5, P.180.
5. M. Pope, H.P. Kallmann and P. Magnante, J. Chem. Phys., 1963, 38(8),
2042.
6. W. Helfrich, W.G. Schneider, Phys. Rev. Lett., 1965, 14(7), 229.
7. W. Helfrich, W.G. Schneider, J. Chem. Phys., 1966, 44(8), 2902.
8. P.S. Vincett, W.A. Barlow, R.A. Hann, G.G. Roberts, Thin Solid
Films, 1982, 94, 476.
9. R.H. Partridge, Polymer, 1983, 24(6), 733.
10. C.W. Tang, S.A. Van Slyke, Appl. Phys. Lett., 1987, 51(12), 913.
11. C. Adachi, S. Tokito, T. Tsutsui, S. saito, Jpn. J. Appl. Phys., 1988,
27(2),219.
12. C. Adachi, T. Tsutsui, S. Saito, Appl. Phys. Lett., 1989, 915, 1489.
13. J. Kido, M. Khodo, K. Okuyana, K. Nagai, Appl. Phys. Lett. , 1992,
61(7), 761.
14. J. Kido, K. Hongavwa, M. Khoda, K. Nagai, K. Okuyama, Jpn, J.
Appl. Phys., 1992, 31(7B), 960.
15. D. Cleary, Polymer technology-after years in the dark, electric plastic
finally shines, 1994, 263, 1700.
16. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks,
K. Mackay, R.H. Friend, P.L. burn, A.B. Holmes, Nature, 1990, 347, 539.
17. M. Fukuda, K. Sawada, K. Yoshino, Jpn. J. Appl. Phys. 1989, 28,
1433.
18. Q. Pei, Y. Yang, J. Am. Chem. Soc. 1996, 118, 7416.
19. M. Kreyenschmidt, G. Klärner, T. Fuhrer, J. Ashenhurst, S. Karg,
W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller, Macromolecules 1998, 31, 1099.
20. Q. Pei, G. Yu, Y. Yang, US Patent 5,900,327, 1999.
21. E. P. Woo, W. R. Shiang, M. Inbasekaran, G. R. Roof, M. T. Bernius, W. Wu, US Patent 6,169,163 B1, 2001.
22. M. Ranger, M. Leclerc, Chem. Commun. 1997, 1597.
23. M. Fukuda, K. Sawada, S. Morita, K. Yoshino, Synth. Met. 1991,
41-43, 855.
24. D. Neher, Macro. Rapid Commun. 2001, 1365.
25. M. Grell, D. D. C. Bradley, X. Long, T. Chamberlain, M. Inbasekaran, E. P. Woo, M. Soliman, Acta Polym. 1998, 49, 439.
26. M. Grell, W. Knoll, D. Lupo, A. Miesel, T. Miteva, D. Neher,
H.-G. Nothofer, U. Scherf, A. Yasuda, Adv. Mater, 1999, 11, 671.
27. M. Grell, D. D. C. Bradley, Adv. Mater, 1999, 11, 895.
28. U. Lemmer, S. Heun, R. F. Mahrt, U. Scgerf, M. Hopmeier,
U. Siegner, E. O. Göbel, K. Müllen, H. Bässler, Chem. Phys. Lett,
1995, 240, 373.
29. G. Zeng, W. –L. Yu, S. –J. Chua, W. Huang, Macromolecules 2002,
35, 6907.
30. E. J. W. List, R. Guentner, P. S. de Freitas, U. Scherf, Adv. Mater.
2002, 14, 374.
31. lia M. West, Jonathan Pearce, Michelle Bentham and Philip Maul. Eur.
Env. 15, 250–259 (2005)
32. S. Setayesh, A. C. Grimsdale, T.Weil, V. Enkelmann, K. Müllen,
F. Meghdadi, E. J. W. List and G. Leising, J. Am. Chem. Soc. 2001, 123, 946.
33. D. Marsitzky, J. Murray, J. C. Scott and K. R. Carter, Chem. Mater.
2001, 13, 4285.
34. P. Scanducci de Freitas, U. Scherf, M. Collon, E. J. W. List,
e-Polymers, 2002. No. 009.
35. E. Zojer, A. Pogantsch, E. Hennebicq, D. Beljonne, J. Brédas,
E. J. W. List, J. Chem. Phys. 2002, 117, 6794.
36. X Gong, P. K Iyer, D. Moses, Guillermo C.Bazan, Alan J. Heeger,and Steven S. Xiao Adv. Funct. Mater, 2003, 13, No 4, 325
37. J.H. Chang, T.G. Jang, K. J. Ihn, W. K. Lee, G. S. Sur J Appl Polym Sci , 2003, 90, 3208.
38. C. Popescu, Thermochim Acta 1996;285:309.
39. DR. Dowdy, J Therm Anal 1987;32(1):137.
40. S. Vyazovkin, J. Comput, Chem. 1997, 18, 393.
41. C. D. Doyle, J Appl Polym Sci 1961, 15, 285.
42. S. Vyazovkin, J. Comput. Chem. 2001, 22, 178.