| 研究生: |
穆薩鑫 Muslikhin, Muslikhin |
|---|---|
| 論文名稱: |
Citizen Adoption of Chatbots in Public Services and Impacts on Work Performance: Perspectives of UTAUT2, Trust and Task-Technology Fit Citizen Adoption of Chatbots in Public Services and Impacts on Work Performance: Perspectives of UTAUT2, Trust and Task-Technology Fit |
| 指導教授: |
林彣珊
Lin, Wen-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 國際經營管理研究所 Institute of International Management |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 聊天機器人 、公共服務 、UTAUT2 理論 、任務-技術契合 、信任 、工作負荷 |
| 外文關鍵詞: | Chatbot, Public service, UTAUT2 theory, Task technology fit, Trust, Workload |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
聊天機器人在全球公共服務中的應用日益普及,但在公民採用動因與組織影響方面仍存在重要研究缺口。本研究採用一個整合性的模型,結合科技接受與使用統一理論2(UTAUT2)、任務-技術契合(TTF)與信任,以探討印尼稅務總局(FISKA/FISKO)內部的聊天機器人採用情況。研究採用混合方法設計,透過偏最小平方法結構方程模型(PLS-SEM)對399位聊天機器人使用者進行量化分析,並輔以對五位系統管理員的質性訪談。研究結果顯示,TTF與信任可提升UTAUT2的解釋力,行為意圖的變異量達19.9%。信任在UTAUT2因素與採用意圖之間扮演關鍵中介角色。社會影響並不顯著,顯示稅務相關聊天機器人的使用具有工具性特質。質性結果指出,聊天機器人的部署可減少前線人員的重複性工作,但增加主管的行政負擔,突顯人力資源再培訓的必要性。研究限制包括橫斷面設計僅捕捉初期採用意圖,未涵蓋長期行為。R²值(0.074–0.199)顯示,隱私疑慮、數位素養及對演算法偏見的認知亦可能影響採用,強調未來應探索納入更多變項的公共部門聊天機器人採用模型。
Chatbots are increasingly used in public services worldwide, yet critical research gaps remain on citizen adoption drivers and organizational impacts. This research utilizes a comprehensive model that integrates the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2), Task-Technology Fit (TTF), and Trust to investigate chatbot adoption within Indonesia’s Directorate General of Taxes (FISKA/FISKO). A mixed-methods design was employed, combining quantitative analysis of 399 chatbot users through Partial Least Squares Structural Equation Modeling (PLS-SEM) and qualitative insights from interviews with five system administrators. Findings reveal that TTF and Trust enhance UTAUT2’s explanatory power, accounting for 19.9% of behavioral intention variance. Trust serves as a key mediator linking UTAUT2 factors with adoption intentions. Social influence was not significant, suggesting the instrumental nature of tax-related chatbot use. Qualitative results indicate chatbot deployment reduces repetitive tasks for frontline staff but increases administrative duties for supervisors, highlighting the need for workforce reskilling. Limitations include the cross-sectional design capturing only initial adoption intent, not long-term behavior. The R² values (0.074–0.199) suggest that factors like privacy concerns, digital literacy, and perceived algorithmic bias also influence adoption, highlighting the importance of exploring models that incorporate variables for chatbot services provided by the public sector.
Abbas, N., Følstad, A., & Bjørkli, C. A. (2022). Chatbots as part of digital government service provision–a user perspective. Paper presented at The International Workshop on Chatbot Research and Design, Cham, Switzerland.
Abbas, S. K., Hassan, H. A., Iftikhar, S., & Waris, A. (2018). Assimilation of TTF and UTAUT for Mobile Banking Usage. International Journal of Advanced Engineering, Management and Science, 4(4), 305-308.
Androutsopoulou, A., Karacapilidis, N., Loukis, E., & Charalabidis, Y. (2019). Transforming the communication between citizens and government through AI-guided chatbots. Government Information Quarterly, 36(2), 358-367.
Aoki, N. (2020). An experimental study of public trust in AI chatbots in the public sector. Government Information Quarterly, 37(4), 101490.
Balakrishnan, J., Abed, S. S., & Jones, P. (2022). The role of meta-UTAUT factors, perceived anthropomorphism, perceived intelligence, and social self-efficacy in chatbot-based services? Technological Forecasting and Social Change, 180.
Benitez, J., Henseler, J., Castillo, A., & Schuberth, F. (2020). How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Information & management, 57(2), 103168.
Catarina, N., Tiago, O., Cruz-Jesus, F., & Venkatesh, V. (2025). Extending the unified theory of acceptance and use of technology for sustainable technologies context. International Journal of Information Management 80(0), 102838.
Cortés-Cediel, M. E., Segura-Tinoco, A., Cantador, I., & Rodríguez Bolívar, M. P. (2023). Trends and challenges of e-government chatbots: Advances in exploring open government data and citizen participation content. Government Information Quarterly, 40(4), 101877.
Das, S., & Datta, B. (2024). Application of UTAUT2 on Adopting Artificial Intelligence Powered Lead Management System (AI-LMS) in passenger car sales. Technological Forecasting and Social Change, 201, 123241.
Ezeife, E., Kokogho, E., Odio, P. E., & Adeyanju, M. O. (2021). The Future of Tax Technology in the United States: A Conceptual Framework for AI-Driven Tax Transformation. International Journal of Multidisciplinary Research and Growth Evaluation, 2(6), 542-551.
Foroughi, B., Iranmanesh, M., Yadegaridehkordi, E., Wen, J., Ghobakhloo, M., Senali, M. G., & Annamalai, N. (2024). Factors Affecting the Use of ChatGPT for Obtaining Shopping Information. International Journal of Consumer Studies, 49(1), e70008.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS quarterly, 19(2), 213-236.
Graham, G., Nisar, T. M., Prabhakar, G., Meriton, R., & Malik, S. (2025). Chatbots in customer service within banking and finance: Do chatbots herald the start of an AI revolution in the corporate world? Computers in Human Behavior, 165, 108570.
Hemesath, S., & Tepe, M. (2024). Public value positions and design preferences toward AI-based chatbots in e-government. Evidence from a conjoint experiment with citizens and municipal front desk officers. Government Information Quarterly, 41(4), 101985.
Ho, S. S., & Cheung, J. C. (2024). Trust in artificial intelligence, trust in engineers, and news media: Factors shaping public perceptions of autonomous drones through UTAUT2. Technology in Society, 77, 102533.
Hooda, A., Gupta, P., Jeyaraj, A., Giannakis, M., & Dwivedi, Y. K. (2022). The effects of trust on behavioral intention and use behavior within e-government contexts. International journal of information management, 67, 102553.
Hujran, O., Al-Debei, M. M., Al-Adwan, A. S., Alarabiat, A., & Altarawneh, N. (2023). Examining the antecedents and outcomes of smart government usage: An integrated model. Government Information Quarterly, 40(1), 101783.
Ingrams, A., Kaufmann, W., & Jacobs, D. (2021). In AI we trust? Citizen perceptions of AI in government decision making. Policy & Internet, 14(2), 390-409.
Jeyaraj, A. (2022). A meta-regression of task-technology fit in information systems research. International journal of information management, 65, 102493.
Jyothsna M, Venkata Subbaiah P, & Kryvinska, N. (2024). Exploring the Chatbot usage intention-A mediating role of Chatbot initial trust. Heliyon, 10(e33028), e33028.
Korkmaz, H., Fidanoglu, A., Ozcelik, S., & Okumus, A. (2021). User Acceptance of Autonomous Public Transport Systems (APTS): Extended UTAUT2 Model. Journal of Public Transportation, 23(1), 100013.
Larsen, A. G., & Følstad, A. (2024). The impact of chatbots on public service provision: A qualitative interview study with citizens and public service providers. Government Information Quarterly, 41(2), 101927.
Li, X., & Wang, J. (2024). Should government chatbots behave like civil servants? The effect of chatbot identity characteristics on citizen experience. Government Information Quarterly, 41(3), 101957.
Lin, T.-C., & Huang, C.-C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information & Management, 45(6), 410-417.
Lin, X., Wu, R., Lim, Y.-T., Han, J., & Chen, S.-C. (2019). Understanding the Sustainable Usage Intention of Mobile Payment Technology in Korea: Cross-Countries Comparison of Chinese and Korean Users. Sustainability, 11(19), 5532.
Luo, B., Lau, R. Y., Li, C., & Si, Y. W. (2022). A critical review of state‐of‐the‐art chatbot designs and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(1), e1434.
Makasi, T., Nili, A., Desouza, K., & Tate, M. (2020). Chatbot-mediated public service delivery: A public service value-based framework. First Monday, 25(12), 0.
Makasi, T., Nili, A., Desouza, K. C., & Tate, M. (2022). A Typology of Chatbots in Public Service Delivery. IEEE Software, 39(3), 58-66.
Marikyan, D., & Papagiannidis, S. (2023). Task-technology fit: a review.S. Papagiannidis (Ed), TheoryHub Book.Brystol: University of Bristol – Bristol Research Portal.
Markovitch, D. G., Stough, R. A., & Huang, D. (2024). Consumer reactions to chatbot versus human service: An investigation in the role of outcome valence and perceived empathy. Journal of Retailing and Consumer Services, 79, 103847.
Martinez, B. M., & McAndrews, L. E. (2023). Investigating U.S. consumers' mobile pay through UTAUT2 and generational cohort theory: An analysis of mobile pay in pandemic times. Telematics and Informatics Reports, 11, 100076.
Mohamed Jasim, K. (2024). Determinants of the continuance use of smart shopping carts: Findings from PLS-SEM and NCA. Journal of Retailing and Consumer Services, 81(0), 104038.
Murtaza, Z., Sharma, I., & Carbonell, P. (2024). Examining chatbot usage intention in a service encounter: Role of task complexity, communication style, and brand personality. Technological Forecasting and Social Change, 209(0), 123806.
Ng, S. W. T., & Zhang, R. (2025). Trust in AI chatbots: A systematic review. Telematics and Informatics, 97(0), 102240.
Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International journal of information management, 34(5), 689-703.
Ozili, P. K. (2023). The acceptable R-square in empirical modelling for social science research. In Social research methodology and publishing results: A guide to non-native English speakers (Vol. 0, pp. 134-143). IGI global.
Paramita, D., Hartono, B., Utomo, D. S., Arini, H. M., Mulyani, Y. P., Rizqiawan, A., Banjar Nahor, K. M., Spanellis, A., Beltran, M., Adrin, H. N., Baroroh, D. K., & Tjahjono, B. (2024). Exploring factors influencing intention and actual usage in household solar PV adoption. Cleaner and Responsible Consumption, 15(0), 100242.
Paraskevi, G., Saprikis, V., Avlogiaris, G., & Chakraborty, P. (2023). Modeling Nonusers’ Behavioral Intention towards Mobile Chatbot Adoption: An Extension of the UTAUT2 Model with Mobile Service Quality Determinants. Human Behavior and Emerging Technologies, 2023(0), 1-16.
Sabol, M., Hair, J., Cepeda, G., Roldán, J. L., & Chong, A. Y. L. (2023). PLS-SEM in information systems: seizing the opportunity and marching ahead full speed to adopt methodological updates. Industrial Management & Data Systems, 123(12), 2997-3017.
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2022).Partial least squares structural equation modeling. Homburg, C., Klarmann, M., Vomberg, A.,Handbook of market research. Cham:Springer.
Senadheera, S., Yigitcanlar, T., Desouza, K. C., Mossberger, K., Corchado, J., Mehmood, R., Li, R. Y. M., & Cheong, P. H. (2025). Understanding Chatbot Adoption in Local Governments: A Review and Framework. Journal of Urban Technology, 32, NO. 3, 35–6(3), 35-69.
Sha, L., Wang, X., & Liu, T. (2025). Understanding college students’ acceptance of machine translation in foreign language learning: an integrated model of UTAUT and task-technology fit. Humanities and Social Sciences Communications, 12(1), 1-12.
Sohail, M., Wang, F., Archer, N., Wang, W., & Yuan, Y. (2024). Lower than expected but still willing to use: User acceptance toward current intelligent conversational agents. Information & Management, 61(8), 104033.
Suhail, F., Adel, M., Al-Emran, M., & AlQudah, A. A. (2024). Are students ready for robots in higher education? Examining the adoption of robots by integrating UTAUT2 and TTF using a hybrid SEM-ANN approach. Technology in Society, 77(0), 102524.
Tamilmani, K., Rana, N. P., Wamba, S. F., & Dwivedi, R. (2021). The extended Unified Theory of Acceptance and Use of Technology (UTAUT2): A systematic literature review and theory evaluation. International Journal of Information Management, 57(0), 102269.
Tejay, G. P. S., & Mohammed, Z. A. (2023). Cultivating security culture for information security success: A mixed-methods study based on anthropological perspective. Information & Management, 60(3), 103751.
Venkatesh, V., Michael G. Morris, Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology Toward a Unified View. MIS Quarterly 27(3), 425-478.
Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178.
Venkatesh, V., Thong, J., & Xu, X. (2016). Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. Journal of the Association for Information Systems, 17(5), 328-376.
Wan, L., Xie, S., & Shu, A. (2020). Toward an Understanding of University Students’ Continued Intention to Use MOOCs: When UTAUT Model Meets TTF Model. Sage Open, 10(3), 2158244020941858.
Wang, H., Tao, D., Yu, N., & Qu, X. (2020). Understanding consumer acceptance of healthcare wearable devices: An integrated model of UTAUT and TTF. International Journal of Medical Informatics, 139(0), 104156.
Wang, Y.-F., Chen, Y.-C., Chien, S.-Y., & Wang, P.-J. (2024). Citizens’ trust in AI-enabled government systems. Information Polity, 29(3), 293-312.
Wu, R.-Z., Lee, J.-H., & Tian, X.-F. (2021). Determinants of the Intention to Use Cross-Border Mobile Payments in Korea among Chinese Tourists: An Integrated Perspective of UTAUT2 with TTF and ITM. Journal of Theoretical and Applied Electronic Commerce Research, 16(5), 1537-1556.
Zhang, J., Lu, X., Zheng, W., & Wang, X. (2024). It’s better than nothing: The influence of service failures on user reusage intention in AI chatbot. Electronic Commerce Research and Applications, 67(0), 101421.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.