簡易檢索 / 詳目顯示

研究生: 黃郁珊
Huang, Yu-Shan
論文名稱: 具持續改善機制之食品品質監控模型與分析方法研究
Research on Food Quality Monitoring Model and Analysis Methods with Continuous Improvement Mechanism
指導教授: 陳裕民
Chen, Yuh-Min
共同指導教授: 陳宗義
Chen, Tsung-Yi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造資訊與系統研究所
Institute of Manufacturing Information and Systems
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 85
中文關鍵詞: 食品品質資料科學機器學習異常偵測趨勢預測預警持續改善
外文關鍵詞: Food quality, Data science, Machine learning, Anomaly detection, Trend prediction, Early warning, Continuous improvement
相關次數: 點閱:161下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 商品品質是消費者關注的重點,維護商品品質則是業者重要的責任。食品品質的維護更受到各界極大的重視,因其牽涉到人體的生命安全。為維護供應鏈上各家企業的食品品質與安全,企業須審慎選擇其原物料供應商,並對企業自身內部進行「自主管理」。傳統上,企業內部使用之品質管理分析多使用六標準差方法(Six Sigma Methodology)、管制圖及魚骨圖等方法維持品質並改善問題。然而,這些方法無法即時偵測品質之異常並快速反應,且容易因考量的因素不完全,而導致結果不理想。
    隨著物聯網觀念的出現與技術的普及,許多學者利用收集的生產數據,再以人工智慧及機器學習等技術,對生產之品質進行分析。然而,現有之研究多侷限於單一功能,缺乏整合整體品質監控與管理功能之模型,且未提及模型持續更新之方法。資料科學提供了掌握現況、預測預防、診斷處方、及自主不斷優化的系統化循環。食品供應鏈各供應點可視為一系統,因此,可將系統工程「系統監控」與「持續改善」以及風險管理「預防」之概念,與資料科學之系統化分析循環相結合,設計一個具掌握現況、監控變因、異常偵測、趨勢預測、預警、診斷處方、經驗累積與不斷優化循環的「食品安全監控與管理模式」,以維護供應鏈上各家企業的食品品質與安全。
    針對食品品質與安全之維護需求,本研究提出一「具持續改善機制之食品品質監控模型」並開發其實現技術。針對此一目標,本研究設計一「食品安全維護模型」,以分析食品供應鏈與企業內部應各自及共同具備之功能。接著,參考資料科學之概念,設計「具持續改善機制之食品品質監控模型」,並依此模型針對食品品質分析之需求,設計「食品品質監控與分析之資料模型」。最後,運用統計與機器學習之技術,實現「食品品質監控、預測及預警之功能」與「持續改善之機制」。
    本研究使用公開數據集進行實驗,驗證所提之技術的可行性與有效性。在異常偵測的方法中,使用全資料於具持續改善機制的準確率為95.33%、直接使用全資料的方法準確率為95.18%;使用滑窗方法取資料並用於具持續改善機制的準確率為95.26%、直接使用滑窗方法取資料的準確率為95.06%。在趨勢預測的方法中,使用全資料於具持續改善機制的均方根誤差為6.9、直接使用全資料的方法均方根誤差為9.8。在這兩種功能中,具持續改善機制方法的實驗結果皆優於直接使用增量資料的方法,故具持續改善機制之方法是可行且有效的。

    Product quality is the focus of consumers' attention, and maintaining product quality is an important responsibility of the industry. The maintenance of food quality has received great attention from all walks of life because it involves the safety of human life. In order to maintain the food quality and safety of each company in the supply chain, companies must carefully select their raw material suppliers and carry out "self-management" within the company itself. Traditionally, the internal quality management analysis used by enterprises mostly uses Six Sigma Methodology, control charts, and fishbone diagrams to maintain quality and improve problems. However, these methods cannot detect quality abnormalities in real-time and react quickly and are prone to unsatisfactory results due to incomplete considerations.

    With the emergence of the concept of the Internet of Things and the popularization of technology, many scholars use the collected production data and then use artificial intelligence and machine learning techniques to analyze the quality of production. However, the existing research is mostly limited to a single function, lacks a model that integrates the overall quality monitoring and management functions, and does not mention the method of continuous updating of the model. Data science provides a systematic cycle of mastering the current situation, predicting and preventing, diagnosing prescriptions, and continuously optimizing independently. Each supply point of the food supply chain can be regarded as a system, therefore, the concepts of system engineering "system monitoring" and "continuous improvement" and risk management "prevention" can be combined with the systematic analysis cycle of data science to design a "food safety monitoring and management model" with current status, monitoring variables, abnormal detection, trend prediction, early warning, diagnosis prescription, experience accumulation, and continuous optimization cycle to maintain the food quality and safety of all companies in the supply chain.

    In response to the maintenance needs of food quality and safety, this research proposes a "food quality monitoring model with a continuous improvement mechanism" and develops its implementation technology. Aiming at this goal, this research designs a "food safety maintenance model" to analyze the functions that the food supply chain and the enterprise should have separately and jointly. Then, referring to the concept of data science, design a "food quality monitoring model with a continuous improvement mechanism", and based on this model, design a "data model for food quality monitoring and analysis" in response to the needs of food quality analysis. Finally, the use of statistics and machine learning techniques to achieve "food quality monitoring, prediction, and early warning functions" and "continuous improvement mechanism".

    This study uses public data sets to conduct experiments to verify the feasibility and effectiveness of the proposed technology. In the method of anomaly detection, the accuracy rate of using the full data in a continuous improvement mechanism is 95.33%, and the accuracy of the method using the full data directly is 95.18%; the accuracy of using the sliding window method to obtain data and using it with a continuous improvement mechanism is 95.26%, and the accuracy of directly using the sliding window method to obtain data is 95.06%. In the trend prediction method, the root-mean-square error of using all data with a continuous improvement mechanism is 6.9, and the root-mean-square error of using all data directly is 9.8. In these two functions, the experimental results of the method with continuous improvement mechanism are better than the method of directly using incremental data, so the method with a continuous improvement mechanism is feasible and effective.

    摘要 I 誌謝 IX 目錄 X 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機 2 1.3 研究目的 3 1.4 問題分析 3 1.5 研究項目與方法 4 1.6 研究步驟 6 第二章 文獻探討 7 2.1 食品供應網與追蹤追溯系統 7 2.2 持續改善 8 2.3 資料科學 10 2.4 機器學習 12 2.5 食品品質異常偵測、趨勢預測與預警 15 第三章 食品品質監控與分析之模型設計 20 3.1 食品供應鏈安全維護概念圖 20 3.2 食品安全維護模型設計 22 3.3 食品品質監控與預警模型 27 3.4 具持續改善機制之食品品質監控與分析模型 28 第四章 資料模型設計 31 4.1 食品製造流程模型 31 4.2 工作站之資料關係模型 33 4.3 食品品質監控與分析之資料模型 34 第五章 具持續改善機制之食品品質監控與分析實現技術開發 38 5.1 重要影響因子分析方法 38 5.1.1 資料前處理 39 5.1.2 模型選擇 40 5.2 異常偵測方法 41 5.2.1 資料前處理 42 5.2.2 模型選擇 42 5.2.3 模型評估 43 5.3 趨勢預測方法 44 5.3.1 資料前處理 46 5.3.2 模型選擇 46 5.3.3 模型評估 48 5.4 預警 49 5.4.1 資料前處理 49 5.4.2 模型選擇 49 5.4.3 模型評估 50 5.5 具持續改善機制 50 5.5.1 資料前處理 51 5.5.2 機制評估 51 第六章 實作與驗證 53 6.1 實作介紹 53 6.1.1 實作環境介紹 53 6.1.2 實作資料介紹 53 6.1.3 實作資料處理 54 6.2 實驗過程與結果討論 57 6.2.1 資料前處理與影響因子分析 57 6.2.2 異常偵測 59 6.2.3 趨勢預測 62 6.2.4 預警 66 6.2.5持續改善機制 69 第七章 結論與未來展望 72 7.1 結論 72 7.2 未來展望 73 參考文獻 75

    Adem, A., Çolak, A., & Dağdeviren, M. (2018). An integrated model using SWOT analysis and Hesitant fuzzy linguistic term set for evaluation occupational safety risks in life cycle of wind turbine. Safety science, 106, 184-190.
    Aghasafari, H., Karbasi, A., Mohammadi, H., & Calisti, R. (2020). Determination of the best strategies for development of organic farming: A SWOT–Fuzzy Analytic Network Process approach. Journal of Cleaner Production, 277, 124039.
    Aghdam, K. A., Aghajani, A., Kanani, F., Sanjari, M. S., Chaibakhsh, S., Shirvaniyan, F., & Moghaddasi, M. (2021). A novel decision tree approach to predict the probability of conversion to multiple sclerosis in Iranian patients with optic neuritis. Multiple Sclerosis and Related Disorders, 47, 102658.
    An, J., Nie, G., & Hu, B. (2021). Area-Wide estimation of seismic building structural types in rural areas by using decision tree and local knowledge in combination. International Journal of Disaster Risk Reduction, 60, 102320.
    An, Y., Ding, S., Shi, S., & Li, J. (2018). Discrete space reinforcement learning algorithm based on support vector machine classification. Pattern Recognition Letters, 111, 30-35.
    Aich, S., Muduli, K., Onik, M. M. H., & Kim, H. C. (2018). A novel approach to identify the best practices of quality management in SMES based on critical success factors using interpretive structural modeling (ISM). International Journal of Engineering and Technology, 7(3), 130-133.
    Asadi, F., Phumpho, S., & Pongswatd, S. (2020). Remote monitoring and alert system of HV transformer based on FMEA. Energy Reports, 6, 807-813.
    Badillo, S., Banfai, B., Birzele, F., Davydov, I. I., Hutchinson, L., Kam‐Thong, T., ... & Zhang, J. D. (2020). An introduction to machine learning. Clinical Pharmacology & Therapeutics, 107(4), 871-885.
    Boer, H., Berger, A., Chapman, R., & Gertsen, F. (Eds.). (2017). CI changes from suggestion box to organisational learning: continuous improvement in Europe and Australia: Continuous Improvement in Europe and Australia. Routledge.
    Bouchefry, Khadija El., & de Souza R. S. (2020). Chapter 12 - Learning in Big Data: Introduction to Machine Learning. Knowledge Discovery in Big Data from Astronomy and Earth Observation, 1, 225-249.
    Bose, I., & Mahapatra, R. K. (2001). Business data mining—a machine learning perspective. Information & management, 39(3), 211-225.
    Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
    Buczak, A. L., & Guven, E. (2015). A survey of data mining and machine learning methods for cyber security intrusion detection. IEEE Communications surveys & tutorials, 18(2), 1153-1176.
    Chang, S. E., Chen, Y. C., & Lu, M. F. (2019). Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process. Technological Forecasting and Social Change, 144, 1-11.
    Chen, Y., Zheng, W., Li, W., & Huang, Y. (2021). Large group activity security risk assessment and risk early warning based on random forest algorithm. Pattern Recognition Letters, 144, 1-5.
    Cleveland, W. S. (2001). Data science: an action plan for expanding the technical areas of the field of statistics. International statistical review, 69(1), 21-26.
    Codex Alimentarius Commission. (2006). Principles for Traceability/Product Tracing as a Tool within a Food Inspection and Certification System. Retrieved from http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B60-2006%252FCXG_060e.pdf (May 8,2021)
    Cordón, I., Luengo, J., García, S., Herrera, F., & Charte, F. (2019). Smartdata: Data preprocessing to achieve smart data in R. Neurocomputing, 360, 1-13.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27.
    Cruz, E. F., da Cruz, A. M. R., & Gomes, R. (2019, June). Analysis of a traceability and quality monitoring platform for the fishery and aquaculture value chain. In 2019 14th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1-6). IEEE.
    Dağsuyu, C., Göçmen, E., Narlı, M., & Kokangül, A. (2016). Classical and fuzzy FMEA risk analysis in a sterilization unit. Computers & Industrial Engineering, 101, 286-294.
    Daniyan, I., Mpofu, K., Oyesola, M., Ramatsetse, B., & Adeodu, A. (2020). Artificial intelligence for predictive maintenance in the railcar learning factories. Procedia Manufacturing, 45, 13-18.
    de Vries, S., & Thierens, D. (2021). A reliable ensemble based approach to semi-supervised learning. Knowledge-Based Systems, 215, 106738.
    Dendera-Gruszka, M., & Kulińska, E. (2020). Supply Chain FMEA Risk Analysis for the Heavy Industry Sector. In Risk Management and Assessment. IntechOpen.
    Denis, Z. (2020). Production quality. Retrieved from https://www.kaggle.com/podsyp/production-quality (June 24, 2021)
    Dittrich, I., Gertz, M., Maassen-Francke, B., Krudewig, K. H., Junge, W., & Krieter, J. (2021). Variable selection for monitoring sickness behavior in lactating dairy cattle with the application of control charts. Journal of Dairy Science.
    dos Santos Luciano, A. C., Picoli, M. C. A., Duft, D. G., Rocha, J. V., Leal, M. R. L. V., & Le Maire, G. (2021). Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm. Computers and Electronics in Agriculture, 184, 106063.
    Farooq, U., Tao, W., Alfian, G., Kang, Y. S., & Rhee, J. (2016). ePedigree traceability system for the agricultural food supply chain to ensure consumer health. Sustainability, 8(9), 839.
    Feng, Y., Chen, J., Zhang, T., He, S., Xu, E., & Zhou, Z. (2021). Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis. ISA transactions.
    Flick, D., Keck, C., Herrmann, C., & Thiede, S. (2020). Machine learning based analysis of factory energy load curves with focus on transition times for anomaly detection. Procedia CIRP, 93, 461-466.
    Filz, M. A., Langner, J. E. B., Herrmann, C., & Thiede, S. (2021). Data-driven failure mode and effect analysis (FMEA) to enhance maintenance planning. Computers in Industry, 129, 103451.
    Garre, A., Fernandez, P. S., Brereton, P., Elliott, C., & Mojtahed, V. (2019). The use of trade data to predict the source and spread of food safety outbreaks: An innovative mathematical modelling approach. Food Research International, 123, 712-721.
    Ghosh, P., Neufeld, A., & Sahoo, J. K. (2021). Forecasting directional movements of stock prices for intraday trading using LSTM and random forests. Finance Research Letters, 102280.
    Golan, E. H., Krissoff, B., & Kuchler, F. (2004). Food traceability: One ingredient in a safe and efficient food supply (No. 1490-2016-127195).
    Guleria, P., Pathania, A., Shukla, R. K., & Sharma, S. (2021). Lean six-sigma: Panacea to reduce rejection in gear manufacturing industry. Materials Today: Proceedings.
    Guo, Z., Yu, B., Hao, M., Wang, W., Jiang, Y., & Zong, F. (2021). A novel hybrid method for flight departure delay prediction using Random Forest Regression and Maximal Information Coefficient. Aerospace Science and Technology, 106822.
    Hajjaji, Y., Boulila, W., Farah, I. R., Romdhani, I., & Hussain, A. (2021). Big data and IoT-based applications in smart environments: A systematic review. Computer Science Review, 39, 100318.
    Han, Y., Cui, S., Geng, Z., Chu, C., Chen, K., & Wang, Y. (2019). Food quality and safety risk assessment using a novel HMM method based on GRA. Food Control, 105, 180-189.
    He, Z., Tran, K. P., Thomassey, S., Zeng, X., Xu, J., & Yi, C. (2021). Multi-objective optimization of the textile manufacturing process using deep-Q-network based multi-agent reinforcement learning. Journal of Manufacturing Systems.
    Herrero, S. G., Saldaña, M. A. M., del Campo, M. A. M., & Ritzel, D. O. (2002). From the traditional concept of safety management to safety integrated with quality.
    Hoem, O., & Lodgaard, E. (2016). Model for supporting lasting managerial efforts in continuous improvement: A case study in product engineering. Procedia CIRP, 50, 38-43.
    Hu, H., van der Westhuysen, A. J., Chu, P., & Fujisaki-Manome, A. (2021). Predicting Lake Erie wave heights using XGBoost and LSTM. Ocean Modelling, 101832.
    Huang, J. C., Tsai, Y. C., Wu, P. Y., Lien, Y. H., Chien, C. Y., Kuo, C. F., ... & Kuo, C. H. (2020). Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method. Computer Methods and Programs in Biomedicine, 195, 105536.
    Huang, W., Li, T., Liu, J., Xie, P., Du, S., & Teng, F. (2021). An overview of air quality analysis by big data techniques: Monitoring, forecasting, and traceability. Information Fusion.
    Huo, Y., Bouffard, F., & Joós, G. (2021). Decision tree-based optimization for flexibility management for sustainable energy microgrids. Applied Energy, 290, 116772.
    Hyun, S., Kaewprag, P., Cooper, C., Hixon, B., & Moffatt-Bruce, S. (2020). Exploration of critical care data by using unsupervised machine learning. Computer methods and programs in biomedicine, 194, 105507.
    Ikram, M., Sroufe, R., Rehman, E., Shah, S. Z. A., & Mahmoudi, A. (2020). Do quality, environmental, and social (QES) certifications improve international trade? A comparative grey relation analysis of developing vs. developed countries. Physica A: Statistical Mechanics and its Applications, 545, 123486.
    IoT, W. (2017). Descriptive, predictive, prescriptive: Transforming asset and facilities management with analytics. IBM paper, at: http://www-01. ibm. com/common/ssi/cgi-bin/ssialias.
    Ippolito, M., Ferguson, J., & Jenson, F. (2021). Improving facies prediction by combining supervised and unsupervised learning methods. Journal of Petroleum Science and Engineering, 200, 108300.
    Itani, S., Lecron, F., & Fortemps, P. (2020). A one-class classification decision tree based on kernel density estimation. Applied soft computing, 91, 106250.
    Iqbal, W., Berral, J. L., & Carrera, D. (2020). Adaptive sliding windows for improved estimation of data center resource utilization. Future Generation Computer Systems, 104, 212-224.
    Iranzadeh, S. (2019). Investigating the relationship between RPN parameters in fuzzy PFMEA and OEE in a sugar factory. Journal of Loss Prevention in the Process Industries, 60, 221-232.
    Jiang, T., Gradus, J. L., & Rosellini, A. J. (2020). Supervised machine learning: a brief primer. Behavior Therapy, 51(5), 675-687.
    Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2020). Achieving sustainable performance in a data-driven agriculture supply chain: A review for research and applications. International Journal of Production Economics, 219, 179-194.
    Kappelhof, N., Ramos, L. A., Kappelhof, M., van Os, H. J. A., Chalos, V., van Kranendonk, K. R., ... & Marquering, H. A. (2021). Evolutionary algorithms and decision trees for predicting poor outcome after endovascular treatment for acute ischemic stroke. Computers in Biology and Medicine, 133, 104414.
    Karimi, M., Niknamfar, A. H., & Niaki, S. T. A. (2019). An application of fuzzy-logic and grey-relational ANP-based SWOT in the ceramic and tile industry. Knowledge-Based Systems, 163, 581-594.
    Keramat-Jahromi, M., Mohtasebi, S. S., Mousazadeh, H., Ghasemi-Varnamkhasti, M., & Rahimi-Movassagh, M. (2021). Real-time moisture ratio study of drying date fruit chips based on on-line image attributes using kNN and random forest regression methods. Measurement, 172, 108899.
    Lade, P., Ghosh, R., & Srinivasan, S. (2017). Manufacturing analytics and industrial internet of things. IEEE Intelligent Systems, 32(3), 74-79.
    Lam, H. M., Remais, J., Fung, M. C., Xu, L., & Sun, S. S. M. (2013). Food supply and food safety issues in China. The Lancet, 381(9882), 2044-2053.
    Lee, J., Lee, Y. C., & Kim, J. T. (2021). Migration from the traditional to the smart factory in the die-casting industry: Novel process data acquisition and fault detection based on artificial neural network. Journal of Materials Processing Technology, 290, 116972.
    Lepenioti, K., Bousdekis, A., Apostolou, D., & Mentzas, G. (2020). Prescriptive analytics: Literature review and research challenges. International Journal of Information Management, 50, 57-70
    Li, Y., Pei, D., & Wu, Z. (2020). A multivariate non-parametric control chart based on run test. Computers & Industrial Engineering, 149, 106839..
    Li, Y., Stroe, D. I., Cheng, Y., Sheng, H., Sui, X., & Teodorescu, R. (2021). On the feature selection for battery state of health estimation based on charging–discharging profiles. Journal of Energy Storage, 33, 102122.
    Lin, X., Cui, S., Han, Y., Geng, Z., & Zhong, Y. (2019). An improved ISM method based on GRA for hierarchical analyzing the influencing factors of food safety. Food control, 99, 48-56.
    Liu, D. (2021). The effectiveness of three-way classification with interpretable perspective. Information Sciences, 567, 237-255.
    Liu, Z. Y., Li, F., Mu, Y. Y., & Xu, J. (2020). Comprehensive evaluation of process parameters optimization for sheet piercing assisted by magnetic medium based on grey relational analysis. Results in Physics, 19, 103288.
    Liu, Z., Wang, R., Japkowicz, N., Tang, D., Zhang, W., & Zhao, J. (2021). Research on unsupervised feature learning for Android malware detection based on Restricted Boltzmann Machines. Future Generation Computer Systems, 120, 91-108.
    Lo, H. W., & Liou, J. J. (2018). A novel multiple-criteria decision-making-based FMEA model for risk assessment. Applied Soft Computing, 73, 684-696.
    Ma, B., Han, Y., Cui, S., Geng, Z., Li, H., & Chu, C. (2020). Risk early warning and control of food safety based on an improved analytic hierarchy process integrating quality control analysis method. Food Control, 108, 106824.
    Ma, S., Zhang, Y., Lv, J., Ge, Y., Yang, H., & Li, L. (2020). Big data driven predictive production planning for energy-intensive manufacturing industries. Energy, 211, 118320.
    Mao, X., Yang, H., Huang, S., Liu, Y., & Li, R. (2019). Extractive summarization using supervised and unsupervised learning. Expert Systems with Applications, 133, 173-181.
    Madeti, S. R., & Singh, S. N. (2018). Modeling of PV system based on experimental data for fault detection using kNN method. Solar Energy, 173, 139-151.
    Mentzer, J. T., DeWitt, W., Keebler, J. S., Min, S., Nix, N. W., Smith, C. D., & Zacharia, Z. G. (2001). Defining supply chain management. Journal of Business logistics, 22(2), 1-25.
    Mobin, M., Li, Z., Cheraghi, S. H., & Wu, G. (2019). An approach for design Verification and Validation planning and optimization for new product reliability improvement. Reliability Engineering & System Safety, 190, 106518.
    Mutlu, N. G., & Altuntas, S. (2019). Risk analysis for occupational safety and health in the textile industry: Integration of FMEA, FTA, and BIFPET methods. International Journal of Industrial Ergonomics, 72, 222-240.
    Nasrabadi, N. M. (2007). Pattern recognition and machine learning. Journal of electronic imaging, 16(4), 049901.
    Nsafon, B. E. K., Butu, H. M., Owolabi, A. B., Roh, J. W., Suh, D., & Huh, J. S. (2020). Integrating multi-criteria analysis with PDCA cycle for sustainable energy planning in Africa: Application to hybrid mini-grid system in Cameroon. Sustainable energy technologies and assessments, 37, 100628.
    Nayak, R., Jiwani, S. A., & Rajitha, B. (2021). Spam email detection using machine learning algorithm. Materials Today: Proceedings.
    Oliveira, J. J. M., & Cordeiro, R. L. F. (2020). Unsupervised dimensionality reduction for very large datasets: Are we going to the right direction?. Knowledge-Based Systems, 196, 105777.
    Ou, S. Y. (2007). Exploration of IT department executing Total Quality Management–Based on the Car Company.
    Oubanas, H., Gejadze, I., Malaterre, P. O., & Mercier, F. (2018). River discharge estimation from synthetic SWOT-type observations using variational data assimilation and the full Saint-Venant hydraulic model. Journal of Hydrology, 559, 638-647.
    Pant, J., Pant, R. P., Singh, M. K., Singh, D. P., & Pant, H. (2021). Analysis of agricultural crop yield prediction using statistical techniques of machine learning. Materials Today: Proceedings.
    Peng, Y., & Dong, M. (2011). A hybrid approach of HMM and grey model for age-dependent health prediction of engineering assets. Expert Systems with Applications, 38(10), 12946-12953.
    Pérez-Chacón, R., Asencio-Cortés, G., Martínez-Álvarez, F., & Troncoso, A. (2020). Big data time series forecasting based on pattern sequence similarity and its application to the electricity demand. Information Sciences, 540, 160-174.
    Pirneskoski, J., Tamminen, J., Kallonen, A., Nurmi, J., Kuisma, M., Olkkola, K. T., & Hoppu, S. (2020). Random forest machine learning method outperforms prehospital National Early Warning Score for predicting one-day mortality: A retrospective study. Resuscitation Plus, 4, 100046.
    Pizzuti, T., & Mirabelli, G. (2015). The Global Track&Trace System for food: General framework and functioning principles. Journal of Food Engineering, 159, 16-35.
    Poornima, S., & Pushpalatha, M. (2020). A survey on various applications of prescriptive analytics. International Journal of Intelligent Networks, 1, 76-84.
    Prashar, A. (2017). Adopting PDCA (Plan-Do-Check-Act) cycle for energy optimization in energy-intensive SMEs. Journal of cleaner production, 145, 277-293.
    Rakhra, M., Soniya, P., Tanwar, D., Singh, P., Bordoloi, D., Agarwal, P., ... & Verma, N. (2021). Crop Price Prediction Using Random Forest and Decision Tree Regression:-A Review. Materials Today: Proceedings.
    Rasmus, A., Valpola, H., Honkala, M., Berglund, M., & Raiko, T. (2015). Semi-supervised learning with ladder networks. arXiv preprint arXiv:1507.02672.
    Rathi, R., Singh, M., Verma, A. K., Gurjar, R. S., Singh, A., & Samantha, B. (2021). Identification of Lean Six Sigma barriers in automobile part manufacturing industry. Materials Today: Proceedings.
    Reel, P. S., Reel, S., Pearson, E., Trucco, E., & Jefferson, E. (2021). Using machine learning approaches for multi-omics data analysis: A review. Biotechnology Advances, 107739.
    Rasheed, F., & Wahid, A. (2021). Learning style detection in E-learning systems using machine learning techniques. Expert Systems with Applications, 174, 114774.
    Renu, R., Visotsky, D., Knackstedt, S., Mocko, G., Summers, J. D., & Schulte, J. (2016). A knowledge based FMEA to support identification and management of vehicle flexible component issues. Procedia Cirp, 44, 157-162.
    Rocha, M. S. R., & Caldeira-Pires, A. (2019). Environmental product declaration promotion in Brazil: SWOT analysis and strategies. Journal of Cleaner Production, 235, 1061-1072.
    Sajid, S., Haleem, A., Bahl, S., Javaid, M., Goyal, T., & Mittal, M. (2021). Data science applications for predictive maintenance and materials science in context to Industry 4.0. Materials Today: Proceedings.
    Saleh, K., & Ayad, A. (2021). Fault zone identification and phase selection for microgrids using decision trees ensemble. International Journal of Electrical Power & Energy Systems, 132, 107178.
    Santos, M. S., Soares, J. P., Abreu, P. H., Araújo, H., & Santos, J. (2017, June). Influence of data distribution in missing data imputation. In Conference on Artificial Intelligence in Medicine in Europe (pp. 285-294). Springer, Cham.
    Sarker, I. H. (2021). CyberLearning: Effectiveness analysis of machine learning security modeling to detect cyber-anomalies and multi-attacks. Internet of Things, 14, 100393.
    Salah, K., Nizamuddin, N., Jayaraman, R., & Omar, M. (2019). Blockchain-based soybean traceability in agricultural supply chain. IEEE Access, 7, 73295-73305.
    Salamanis, A. I., Lipitakis, A. D., Gravvanis, G. A., Kotsiantis, S., & Anagnostopoulos, D. (2021). An Adaptive Cluster-based Sparse Autoregressive Model for Large-Scale Multi-Step Traffic Forecasting. Expert Systems with Applications, 115093.
    Saritha, B., Bonagiri, R., & Deepika, R. (2021). Open source technologies in data science and big data analytics. Materials Today: Proceedings.
    Shankar, R., Gupta, R., & Pathak, D. K. (2018). Modeling critical success factors of traceability for food logistics system. Transportation Research Part E: Logistics and Transportation Review, 119, 205-222.
    Silva, A. S., Medeiros, C. F., & Vieira, R. K. (2017). Cleaner Production and PDCA cycle: Practical application for reducing the Cans Loss Index in a beverage company. Journal of Cleaner Production, 150, 324-338.
    Singh, M., & Chhabra, J. K. (2021). EGIA: A new node splitting method for decision tree generation: Special application in software fault prediction. Materials Today: Proceedings.
    Škvára, V., Pevný, T., & Šmídl, V. (2018). Are generative deep models for novelty detection truly better?. arXiv preprint arXiv:1807.05027.
    Smith, C. J. (2020). Food Safety and Health—Past Problems and Future Solutions. Engineering, 6(4), 384-388.
    Soriano-Vargas, A., Werneck, R., Moura, R., Júnior, P. M., Prates, R., Castro, M., ... & Rocha, A. (2021). A visual analytics approach to anomaly detection in hydrocarbon reservoir time series data. Journal of Petroleum Science and Engineering, 108988.
    Soota, T. (2020). Multi-response optimization of machining parameter for Zircaloy by response surface methodology and grey relation analysis. Materials Today: Proceedings, 21, 1544-1550.
    Sreejith, S., Priyadarshini, A., & Chaganti, P. K. (2020). Multi-objective optimization of surface roughness and residual stress in turning using grey relation analysis. Materials Today: Proceedings, 26, 2862-2868.
    Sudarshan, V. K., Acharya, U. R., Oh, S. L., Adam, M., Tan, J. H., Chua, C. K., ... & San Tan, R. (2017). Automated diagnosis of congestive heart failure using dual tree complex wavelet transform and statistical features extracted from 2 s of ECG signals. Computers in Biology and Medicine, 83, 48-58.
    Szymańska, E. (2018). Modern data science for analytical chemical data–A comprehensive review. Analytica chimica acta, 1028, 1-10.
    Tbarki, K., Said, S. B., Ksantini, R., & Lachiri, Z. (2017, May). Landmine detection improvement using one-class SVM for unbalanced data. In 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP) (pp. 1-6). IEEE.
    Tian, F. (2017, June). A supply chain traceability system for food safety based on HACCP, blockchain & Internet of things. In 2017 International conference on service systems and service management (pp. 1-6). IEEE.
    Todkar, S. S., Baltazart, V., Ihamouten, A., Dérobert, X., & Le Bastard, C. (2021). One-class SVM based outlier detection strategy to detect thin interlayer debondings within pavement structures using Ground Penetrating Radar data. Journal of Applied Geophysics, 104392.
    Toğa, G., Atalay, B., & Toksari, M. D. (2021). COVID-19 Prevalence Forecasting using Autoregressive Integrated Moving Average (ARIMA) and Artificial Neural Networks (ANN): Case of Turkey. Journal of Infection and Public Health.
    Tuda, M., & Luna-Maldonado, A. I. (2020). Image-based insect species and gender classification by trained supervised machine learning algorithms. Ecological Informatics, 60, 101135.
    Velmurugan, P., Kannagi, A., & Varsha, M. (2021). Superior fuzzy enumeration crop prediction algorithm for big data agriculture applications. Materials Today: Proceedings.
    Wang, J., & Yue, H. (2017). Food safety pre-warning system based on data mining for a sustainable food supply chain. Food Control, 73, 223-229.
    Wang, J., Yue, H., & Zhou, Z. (2017). An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network. Food Control, 79, 363-370.
    Wang, X., He, Y., Xu, Y., Zhang, X., & Zhu, Q. (2019, November). Comprehensive Evaluation Modeling and Analysis Based on ELM Integrated AHP and PCA: Application to Food Safety. In 2019 Chinese Automation Congress (CAC) (pp. 4092-4097). IEEE.
    Wang, S. (2021). An interview with Shouyang Wang: research frontier of big data-driven economic and financial forecasting. Data Science and Management, 1(1), 10-12.
    Wu, Y. (2020). Bank Risk Control based on FPGA and Machine Learning. Microprocessors and Microsystems, 103472.
    Yiying, Z., Yuanlong, R., Fei, L., Jing, S., & Song, L. (2019, March). Research on meat food traceability system based on RFID technology. In 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) (pp. 2172-2175). IEEE.
    Yuan, Y., Wang, Z., & Wang, W. (2021). Unsupervised concept drift detection based on multi-scale slide windows. Ad Hoc Networks, 111, 102325.
    Zhao, L. (2021). Prediction model of ecological environmental water demand based on big data analysis. Environmental Technology & Innovation, 21, 101196.
    Zhao, S., Zhang, S., Liu, J., Wang, H., Zhu, J., Li, D., & Zhao, R. (2021). Application of machine learning in intelligent fish aquaculture: A review. Aquaculture, 736724.
    全國法規資料庫. (2018). 食品及其相關產品追溯追蹤系統管理辦法. Retrieved from: https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040111 (May. 8,2021)
    吳貴彬、陳相如. (2003). 失效模式與效應分析之應用. 中華民國品質學會第 39 屆年會暨第 9 屆全國品質管理研討會. Retrieved from: https://www.pws.stu.edu.tw/kbwu/FMEA.pdf (May. 8,2021)
    陳昇瑋. (2017, May).讓資料為你產生價值. Retrieved from:https://www.hbrtaiwan.com/article_content_AR0007025.html (May. 8,2021)
    陳姿蓉. (2018). 智能化食品安全監控與管理系統設計. 成功大學製造資訊與系統研究所學位論文, 1-91.

    下載圖示 校內:2023-08-23公開
    校外:2023-08-23公開
    QR CODE